Superoxide dismutase derivative preve in liver and kidney of rats induced by E

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TEARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TEARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.

Original languageEnglish
Pages (from-to)189-194
Number of pages6
JournalEuropean Journal of Applied Physiology and Occupational Physiology
Volume72
Issue number3
Publication statusPublished - 1996 Dec 1
Externally publishedYes

Fingerprint

Running
Superoxide Dismutase
Xanthine Oxidase
Kidney
Liver
Thiobarbituric Acid Reactive Substances
Glutathione Peroxidase
Lipid Peroxidation
Oxidants
Catalase
Half-Life
Albumins
Oxidative Stress
Enzymes
superoxide dismutase-poly(styrene co-maleic acid butyl ester)

Keywords

  • Exercise
  • Lipid peroxidation
  • Liver/kidney
  • Oxidative stress
  • Superoxide dismutase derivative

ASJC Scopus subject areas

  • Physiology
  • Public Health, Environmental and Occupational Health

Cite this

@article{a76d7217dfbe4bf19cbdeff24baf42bd,
title = "Superoxide dismutase derivative preve in liver and kidney of rats induced by E",
abstract = "To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TEARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TEARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.",
keywords = "Exercise, Lipid peroxidation, Liver/kidney, Oxidative stress, Superoxide dismutase derivative",
author = "Zsolt Radak",
year = "1996",
month = "12",
day = "1",
language = "English",
volume = "72",
pages = "189--194",
journal = "European Journal of Applied Physiology",
issn = "1439-6319",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Superoxide dismutase derivative preve in liver and kidney of rats induced by E

AU - Radak, Zsolt

PY - 1996/12/1

Y1 - 1996/12/1

N2 - To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TEARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TEARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.

AB - To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TEARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TEARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney.

KW - Exercise

KW - Lipid peroxidation

KW - Liver/kidney

KW - Oxidative stress

KW - Superoxide dismutase derivative

UR - http://www.scopus.com/inward/record.url?scp=0030046645&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030046645&partnerID=8YFLogxK

M3 - Article

VL - 72

SP - 189

EP - 194

JO - European Journal of Applied Physiology

JF - European Journal of Applied Physiology

SN - 1439-6319

IS - 3

ER -