SUPG/PSPG computational analysis of rain erosion in wind-turbine blades

Alessio Castorrini, Alessandro Corsini*, Franco Rispoli, Paolo Venturini, Kenji Takizawa, Tayfun E. Tezduyar

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapter

17 Citations (Scopus)

Abstract

Wind-turbine blades exposed to rain can be damaged by erosion if not protected. Although this damage does not typically influence the structural response of the blades,it could heavily degrade the aerodynamic performance,and therefore the power production. We present a method for computational analysis of rain erosion in wind-turbine blades. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. Accurate representation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a RANS model and SUPG/PSPG stabilization,the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction,and one-way dependence is assumed between the flow field and particle dynamics. The erosion patterns are then computed based on the particle-cloud data.

Original languageEnglish
Title of host publicationModeling and Simulation in Science, Engineering and Technology
PublisherSpringer Basel
Pages77-96
Number of pages20
DOIs
Publication statusPublished - 2016

Publication series

NameModeling and Simulation in Science, Engineering and Technology
ISSN (Print)2164-3679
ISSN (Electronic)2164-3725

ASJC Scopus subject areas

  • Modelling and Simulation
  • Engineering(all)
  • Fluid Flow and Transfer Processes
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'SUPG/PSPG computational analysis of rain erosion in wind-turbine blades'. Together they form a unique fingerprint.

Cite this