Suppression of die-to-die delay variability of silicon on thin buried oxide (SOTB) CMOS circuits by balanced P/N drivability control with back-bias for ultralow-voltage (0.4 V) operation

H. Makiyama, Y. Yamamoto, H. Shinohara, T. Iwamatsu, H. Oda, N. Sugii, K. Ishibashi, T. Mizutani, T. Hiramoto, Y. Yamaguchi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Fingerprint Dive into the research topics of 'Suppression of die-to-die delay variability of silicon on thin buried oxide (SOTB) CMOS circuits by balanced P/N drivability control with back-bias for ultralow-voltage (0.4 V) operation'. Together they form a unique fingerprint.

Chemical Compounds

Physics & Astronomy

Engineering & Materials Science