Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent in a Biphasic System

Takeshi Sugaya, Masahiko Ozaki, Regis Guegan, Naokazu Idota, Yoshiyuki Sugahara

Research output: Contribution to journalArticle

Abstract

Oleyl phosphate-modified HLaNb 2 O 7 ·xH 2 O nanosheets (OP-HLaNb nanosheets) were prepared via phase transfer from an aqueous phase, comprising a dispersion of HLaNb 2 O 7 ·xH 2 O (HLaNb) nanosheets, formed through the intercalation of tetrabutylammonium ion (TBA + ) in the interlayer space of HLaNb and subsequent delamination, to a cyclohexane phase containing oleyl phosphate (OP, a mixture of monoester and diester). The modification of HLaNb nanosheets with OP was essentially completed within 3 days at a pH value of 2 or 4. Both infrared and solid-state 13 C cross-polarization and magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of the OP-HLaNb nanosheets showed the presence of OP and/or related species and TBA + on the HLaNb nanosheet surface. The solid-state 31 P MAS NMR spectra of OP-HLaNb nanosheets exhibited new signals at -2 and 0 ppm, the former of which indicates the formation of Nb-O-P bonds. These whole data set obtained by complementary techniques clearly point out the modification of the HLaNb nanosheet surface by OP moieties causing a phase transfer. OP-HLaNb nanosheets showed higher dispersibility in cyclohexane than the OP-HLaNb-interlayer nanosheets, which were prepared via stepwise substitution reactions in the interlayers of HLaNb to achieve surface modification with OP and subsequent exfoliation in cyclohexane. The presence of TBA + on the HLaNb nanosheets and the use of a liquid-liquid biphasic system were likely to improve the dispersibility. These results show that the preparation of OP-modified HLaNb nanosheets which could be well-dispersed in the cyclohexane phase was successful because of the use of a liquid-liquid biphasic system.

Original languageEnglish
JournalLangmuir
DOIs
Publication statusPublished - 2019 Jan 1

Fingerprint

Nanosheets
cyclohexane
Perovskite
Phosphorus
reagents
Surface treatment
phosphorus
interlayers
liquids
metal spinning
phosphates
Cyclohexane
solid state
nuclear magnetic resonance
cross polarization
intercalation
Magic angle spinning
Liquids
substitutes
preparation

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Cite this

Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent in a Biphasic System. / Sugaya, Takeshi; Ozaki, Masahiko; Guegan, Regis; Idota, Naokazu; Sugahara, Yoshiyuki.

In: Langmuir, 01.01.2019.

Research output: Contribution to journalArticle

@article{4e479881102d42149cd2ed05d0a78040,
title = "Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent in a Biphasic System",
abstract = "Oleyl phosphate-modified HLaNb 2 O 7 ·xH 2 O nanosheets (OP-HLaNb nanosheets) were prepared via phase transfer from an aqueous phase, comprising a dispersion of HLaNb 2 O 7 ·xH 2 O (HLaNb) nanosheets, formed through the intercalation of tetrabutylammonium ion (TBA + ) in the interlayer space of HLaNb and subsequent delamination, to a cyclohexane phase containing oleyl phosphate (OP, a mixture of monoester and diester). The modification of HLaNb nanosheets with OP was essentially completed within 3 days at a pH value of 2 or 4. Both infrared and solid-state 13 C cross-polarization and magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of the OP-HLaNb nanosheets showed the presence of OP and/or related species and TBA + on the HLaNb nanosheet surface. The solid-state 31 P MAS NMR spectra of OP-HLaNb nanosheets exhibited new signals at -2 and 0 ppm, the former of which indicates the formation of Nb-O-P bonds. These whole data set obtained by complementary techniques clearly point out the modification of the HLaNb nanosheet surface by OP moieties causing a phase transfer. OP-HLaNb nanosheets showed higher dispersibility in cyclohexane than the OP-HLaNb-interlayer nanosheets, which were prepared via stepwise substitution reactions in the interlayers of HLaNb to achieve surface modification with OP and subsequent exfoliation in cyclohexane. The presence of TBA + on the HLaNb nanosheets and the use of a liquid-liquid biphasic system were likely to improve the dispersibility. These results show that the preparation of OP-modified HLaNb nanosheets which could be well-dispersed in the cyclohexane phase was successful because of the use of a liquid-liquid biphasic system.",
author = "Takeshi Sugaya and Masahiko Ozaki and Regis Guegan and Naokazu Idota and Yoshiyuki Sugahara",
year = "2019",
month = "1",
day = "1",
doi = "10.1021/acs.langmuir.8b03923",
language = "English",
journal = "Langmuir",
issn = "0743-7463",
publisher = "American Chemical Society",

}

TY - JOUR

T1 - Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent in a Biphasic System

AU - Sugaya, Takeshi

AU - Ozaki, Masahiko

AU - Guegan, Regis

AU - Idota, Naokazu

AU - Sugahara, Yoshiyuki

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Oleyl phosphate-modified HLaNb 2 O 7 ·xH 2 O nanosheets (OP-HLaNb nanosheets) were prepared via phase transfer from an aqueous phase, comprising a dispersion of HLaNb 2 O 7 ·xH 2 O (HLaNb) nanosheets, formed through the intercalation of tetrabutylammonium ion (TBA + ) in the interlayer space of HLaNb and subsequent delamination, to a cyclohexane phase containing oleyl phosphate (OP, a mixture of monoester and diester). The modification of HLaNb nanosheets with OP was essentially completed within 3 days at a pH value of 2 or 4. Both infrared and solid-state 13 C cross-polarization and magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of the OP-HLaNb nanosheets showed the presence of OP and/or related species and TBA + on the HLaNb nanosheet surface. The solid-state 31 P MAS NMR spectra of OP-HLaNb nanosheets exhibited new signals at -2 and 0 ppm, the former of which indicates the formation of Nb-O-P bonds. These whole data set obtained by complementary techniques clearly point out the modification of the HLaNb nanosheet surface by OP moieties causing a phase transfer. OP-HLaNb nanosheets showed higher dispersibility in cyclohexane than the OP-HLaNb-interlayer nanosheets, which were prepared via stepwise substitution reactions in the interlayers of HLaNb to achieve surface modification with OP and subsequent exfoliation in cyclohexane. The presence of TBA + on the HLaNb nanosheets and the use of a liquid-liquid biphasic system were likely to improve the dispersibility. These results show that the preparation of OP-modified HLaNb nanosheets which could be well-dispersed in the cyclohexane phase was successful because of the use of a liquid-liquid biphasic system.

AB - Oleyl phosphate-modified HLaNb 2 O 7 ·xH 2 O nanosheets (OP-HLaNb nanosheets) were prepared via phase transfer from an aqueous phase, comprising a dispersion of HLaNb 2 O 7 ·xH 2 O (HLaNb) nanosheets, formed through the intercalation of tetrabutylammonium ion (TBA + ) in the interlayer space of HLaNb and subsequent delamination, to a cyclohexane phase containing oleyl phosphate (OP, a mixture of monoester and diester). The modification of HLaNb nanosheets with OP was essentially completed within 3 days at a pH value of 2 or 4. Both infrared and solid-state 13 C cross-polarization and magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of the OP-HLaNb nanosheets showed the presence of OP and/or related species and TBA + on the HLaNb nanosheet surface. The solid-state 31 P MAS NMR spectra of OP-HLaNb nanosheets exhibited new signals at -2 and 0 ppm, the former of which indicates the formation of Nb-O-P bonds. These whole data set obtained by complementary techniques clearly point out the modification of the HLaNb nanosheet surface by OP moieties causing a phase transfer. OP-HLaNb nanosheets showed higher dispersibility in cyclohexane than the OP-HLaNb-interlayer nanosheets, which were prepared via stepwise substitution reactions in the interlayers of HLaNb to achieve surface modification with OP and subsequent exfoliation in cyclohexane. The presence of TBA + on the HLaNb nanosheets and the use of a liquid-liquid biphasic system were likely to improve the dispersibility. These results show that the preparation of OP-modified HLaNb nanosheets which could be well-dispersed in the cyclohexane phase was successful because of the use of a liquid-liquid biphasic system.

UR - http://www.scopus.com/inward/record.url?scp=85065095375&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065095375&partnerID=8YFLogxK

U2 - 10.1021/acs.langmuir.8b03923

DO - 10.1021/acs.langmuir.8b03923

M3 - Article

JO - Langmuir

JF - Langmuir

SN - 0743-7463

ER -