Abstract
An ordered and oriented 2-component link L in the 3-sphere is said to be achiral if it is ambient isotopic to its mirror image ignoring the orientation and ordering of the components. Kirk-Livingston showed that if L is achiral then the linking number of L is not congruent to 2 modulo 4. In this paper we study orientation-preserving or reversing symmetries of 2-component links, spatial complete graphs on 5 vertices and spatial complete bipartite graphs on 3 + 3 vertices in detail, and determine necessary conditions on linking numbers and Simon invariants for such links and spatial graphs to be symmetric
Original language | English |
---|---|
Pages (from-to) | 219-236 |
Number of pages | 18 |
Journal | Fundamenta Mathematicae |
Volume | 205 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- Achiral link
- Linking number
- Simon invariant
- Symmetric spatial graph
ASJC Scopus subject areas
- Algebra and Number Theory