Synthesis and chemistry of 1,3,5,7-tetranitrocubane including measurement of its acidity, formation of o-nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane

Kirill A. Lukin, Jianchang Li, Philip E. Eaton, Nobuhiro Kanomata, Jürgen Hain, Eric Punzalan, Richard Gilardi

Research output: Contribution to journalReview article

58 Citations (Scopus)

Abstract

Nitro groups on alternate corners of cubane enhance the acidity of cubyl hydrogen (pK(a) ~21) and provide sufficient activation for ready anion formation. The sodium salt of 1,3,5,7-tetranitrocubane reacts easily with electrophiles and leads thereby to yet more highly substituted cubanes, like carbomethoxy- and (trimethylsilyl)tetranitrocubane. Anions from these species are also easily formed and are useful for further substitution on the cubane nucleus. Dinitrogen tetraoxide reacts with the anion of tetranitrocubane to give 1,2,3,5,7-pentanitrocubane, the first cubane to contain vicinal nitro groups. The reaction probably involves oxidation of the anion to the corresponding radical. Similarly, the anion of pentanitrocubane is used to prepare 1,2,3,4,5,7-hexanitrocubane, the most highly nitrated cubane made to date. Single-crystal X-ray structural information is given for both penta- and hexanitrocubane.

Original languageEnglish
Pages (from-to)9591-9602
Number of pages12
JournalJournal of the American Chemical Society
Volume119
Issue number41
DOIs
Publication statusPublished - 1997 Jan 1

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Synthesis and chemistry of 1,3,5,7-tetranitrocubane including measurement of its acidity, formation of o-nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane'. Together they form a unique fingerprint.

  • Cite this