TY - JOUR
T1 - Synthesis of Water-Soluble Imidazolium Polyesters as Potential Nonviral Gene Delivery Vehicles
AU - Nelson, Ashley M.
AU - Pekkanen, Allison M.
AU - Forsythe, Neil L.
AU - Herlihy, John H.
AU - Zhang, Musan
AU - Long, Timothy Edward
PY - 2017/1/9
Y1 - 2017/1/9
N2 - The inherent hydrolytic reactivity of polyesters renders them excellent candidates for a variety of biomedical applications. Incorporating ionic groups further expands their potential impact, encompassing charge-dependent function such as deoxyribonucleic acid (DNA) binding, antibacterial properties, and pH-responsiveness. Catalyst-free and solvent-free polycondensation of a bromomethyl imidazolium-containing (BrMeIm) diol with neopentylglycol (NPG) and adipic acid (AA) afforded novel charged copolyesters with pendant imidazolium sites. Varying ionic content influenced thermal properties and offered a wide-range, −41 to 40 °C, of composition-dependent glass transition temperatures (Tgs). In addition to desirable melt and thermal stability, polyesters with ionic concentrations ≥15 mol % readily dispersed in water, suggesting potential as nonviral gene delivery vectors. An electrophoretic gel shift assay confirmed the novel cationic copolyesters successfully bound DNA at an N/P ratio of 4 for 50 mol % and 75 mol % charged copolyesters (P(NA50-co-ImA50) and P(NA25-co-ImA75)), and an N/P ratio of 5 for 100 mol % Im (PImA). Polyplexes exhibited insignificant cytotoxicity even at high concentrations (200 μg/mL), and a Luciferase transfection assay revealed the ionic (co)polyesters transfected DNA significantly better than the untreated controls. The successful transfection of these novel (co)polyesters inspires future imidazolium-containing polyester design.
AB - The inherent hydrolytic reactivity of polyesters renders them excellent candidates for a variety of biomedical applications. Incorporating ionic groups further expands their potential impact, encompassing charge-dependent function such as deoxyribonucleic acid (DNA) binding, antibacterial properties, and pH-responsiveness. Catalyst-free and solvent-free polycondensation of a bromomethyl imidazolium-containing (BrMeIm) diol with neopentylglycol (NPG) and adipic acid (AA) afforded novel charged copolyesters with pendant imidazolium sites. Varying ionic content influenced thermal properties and offered a wide-range, −41 to 40 °C, of composition-dependent glass transition temperatures (Tgs). In addition to desirable melt and thermal stability, polyesters with ionic concentrations ≥15 mol % readily dispersed in water, suggesting potential as nonviral gene delivery vectors. An electrophoretic gel shift assay confirmed the novel cationic copolyesters successfully bound DNA at an N/P ratio of 4 for 50 mol % and 75 mol % charged copolyesters (P(NA50-co-ImA50) and P(NA25-co-ImA75)), and an N/P ratio of 5 for 100 mol % Im (PImA). Polyplexes exhibited insignificant cytotoxicity even at high concentrations (200 μg/mL), and a Luciferase transfection assay revealed the ionic (co)polyesters transfected DNA significantly better than the untreated controls. The successful transfection of these novel (co)polyesters inspires future imidazolium-containing polyester design.
UR - http://www.scopus.com/inward/record.url?scp=85018516062&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85018516062&partnerID=8YFLogxK
U2 - 10.1021/acs.biomac.6b01316
DO - 10.1021/acs.biomac.6b01316
M3 - Article
C2 - 28064498
AN - SCOPUS:85018516062
VL - 18
SP - 68
EP - 76
JO - Biomacromolecules
JF - Biomacromolecules
SN - 1525-7797
IS - 1
ER -