T-splines computational membrane–cable structural mechanics with continuity and smoothness: I. Method and implementation

Takuya Terahara, Kenji Takizawa*, Tayfun E. Tezduyar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We present a T-splines computational method and its implementation where structures with different parametric dimensions are connected with continuity and smoothness. We derive the basis functions in the context of connecting structures with 2D and 1D parametric dimensions. Derivation of the basis functions with a desired smoothness involves proper selection of a scale factor for the knot vector of the 1D structure and results in new control-point locations. While the method description focuses on C and C1 continuity, paths to higher-order continuity are marked where needed. In presenting the method and its implementation, we refer to the 2D structure as “membrane” and the 1D structure as “cable.” It goes without saying that the method and its implementation are applicable also to other 2D–1D cases, such as shell–cable and shell–beam structures. We present test computations not only for membrane–cable structures but also for shell–cable structures. The computations demonstrate how the method performs.

Original languageEnglish
JournalComputational Mechanics
DOIs
Publication statusAccepted/In press - 2023

Keywords

  • Continuity
  • Isogeometric analysis
  • Membrane–cable structure
  • Shell–beam structure
  • Shell–cable structure
  • Smoothness
  • T-splines

ASJC Scopus subject areas

  • Computational Mechanics
  • Ocean Engineering
  • Mechanical Engineering
  • Computational Theory and Mathematics
  • Computational Mathematics
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'T-splines computational membrane–cable structural mechanics with continuity and smoothness: I. Method and implementation'. Together they form a unique fingerprint.

Cite this