Testing general relativity with present and future astrophysical observations

Emanuele Berti, Enrico Barausse, Vitor Cardoso, Leonardo Gualtieri, Paolo Pani, Ulrich Sperhake, Leo C. Stein, Norbert Wex, Kent Yagi, Tessa Baker, C. P. Burgess, Flávio S. Coelho, Daniela Doneva, Antonio De Felice, Pedro G. Ferreira, Paulo C C Freire, James Healy, Carlos Herdeiro, Michael Horbatsch, Burkhard KleihausAntoine Klein, Kostas Kokkotas, Jutta Kunz, Pablo Laguna, Ryan N. Lang, Tjonnie G F Li, Tyson Littenberg, Andrew Matas, Saeed Mirshekari, Hirotada Okawa, Eugen Radu, Richard O'Shaughnessy, Bangalore S. Sathyaprakash, Chris Van Den Broeck, Hans A. Winther, Helvi Witek, Mir Emad Aghili, Justin Alsing, Brett Bolen, Luca Bombelli, Sarah Caudill, Liang Chen, Juan Carlos Degollado, Ryuichi Fujita, Caixia Gao, Davide Gerosa, Saeed Kamali, Hector O. Silva, João G. Rosa, Laleh Sadeghian, Marco Sampaio, Hajime Sotani, Miguel Zilhao

Research output: Contribution to journalArticle

391 Citations (Scopus)

Abstract

One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

Original languageEnglish
Article number243001
JournalClassical and Quantum Gravity
Volume32
Issue number24
DOIs
Publication statusPublished - 2015 Dec 1
Externally publishedYes

Fingerprint

relativity
astrophysics
gravitation
probes
predictions
pulsars
gravitational waves
gravitational fields
neutron stars
catalogs
curvature
formulations
stars

Keywords

  • black holes
  • compact binaries
  • general relativity
  • gravitational waves
  • neutron stars

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Berti, E., Barausse, E., Cardoso, V., Gualtieri, L., Pani, P., Sperhake, U., ... Zilhao, M. (2015). Testing general relativity with present and future astrophysical observations. Classical and Quantum Gravity, 32(24), [243001]. https://doi.org/10.1088/0264-9381/32/24/243001

Testing general relativity with present and future astrophysical observations. / Berti, Emanuele; Barausse, Enrico; Cardoso, Vitor; Gualtieri, Leonardo; Pani, Paolo; Sperhake, Ulrich; Stein, Leo C.; Wex, Norbert; Yagi, Kent; Baker, Tessa; Burgess, C. P.; Coelho, Flávio S.; Doneva, Daniela; De Felice, Antonio; Ferreira, Pedro G.; Freire, Paulo C C; Healy, James; Herdeiro, Carlos; Horbatsch, Michael; Kleihaus, Burkhard; Klein, Antoine; Kokkotas, Kostas; Kunz, Jutta; Laguna, Pablo; Lang, Ryan N.; Li, Tjonnie G F; Littenberg, Tyson; Matas, Andrew; Mirshekari, Saeed; Okawa, Hirotada; Radu, Eugen; O'Shaughnessy, Richard; Sathyaprakash, Bangalore S.; Van Den Broeck, Chris; Winther, Hans A.; Witek, Helvi; Aghili, Mir Emad; Alsing, Justin; Bolen, Brett; Bombelli, Luca; Caudill, Sarah; Chen, Liang; Degollado, Juan Carlos; Fujita, Ryuichi; Gao, Caixia; Gerosa, Davide; Kamali, Saeed; Silva, Hector O.; Rosa, João G.; Sadeghian, Laleh; Sampaio, Marco; Sotani, Hajime; Zilhao, Miguel.

In: Classical and Quantum Gravity, Vol. 32, No. 24, 243001, 01.12.2015.

Research output: Contribution to journalArticle

Berti, E, Barausse, E, Cardoso, V, Gualtieri, L, Pani, P, Sperhake, U, Stein, LC, Wex, N, Yagi, K, Baker, T, Burgess, CP, Coelho, FS, Doneva, D, De Felice, A, Ferreira, PG, Freire, PCC, Healy, J, Herdeiro, C, Horbatsch, M, Kleihaus, B, Klein, A, Kokkotas, K, Kunz, J, Laguna, P, Lang, RN, Li, TGF, Littenberg, T, Matas, A, Mirshekari, S, Okawa, H, Radu, E, O'Shaughnessy, R, Sathyaprakash, BS, Van Den Broeck, C, Winther, HA, Witek, H, Aghili, ME, Alsing, J, Bolen, B, Bombelli, L, Caudill, S, Chen, L, Degollado, JC, Fujita, R, Gao, C, Gerosa, D, Kamali, S, Silva, HO, Rosa, JG, Sadeghian, L, Sampaio, M, Sotani, H & Zilhao, M 2015, 'Testing general relativity with present and future astrophysical observations', Classical and Quantum Gravity, vol. 32, no. 24, 243001. https://doi.org/10.1088/0264-9381/32/24/243001
Berti E, Barausse E, Cardoso V, Gualtieri L, Pani P, Sperhake U et al. Testing general relativity with present and future astrophysical observations. Classical and Quantum Gravity. 2015 Dec 1;32(24). 243001. https://doi.org/10.1088/0264-9381/32/24/243001
Berti, Emanuele ; Barausse, Enrico ; Cardoso, Vitor ; Gualtieri, Leonardo ; Pani, Paolo ; Sperhake, Ulrich ; Stein, Leo C. ; Wex, Norbert ; Yagi, Kent ; Baker, Tessa ; Burgess, C. P. ; Coelho, Flávio S. ; Doneva, Daniela ; De Felice, Antonio ; Ferreira, Pedro G. ; Freire, Paulo C C ; Healy, James ; Herdeiro, Carlos ; Horbatsch, Michael ; Kleihaus, Burkhard ; Klein, Antoine ; Kokkotas, Kostas ; Kunz, Jutta ; Laguna, Pablo ; Lang, Ryan N. ; Li, Tjonnie G F ; Littenberg, Tyson ; Matas, Andrew ; Mirshekari, Saeed ; Okawa, Hirotada ; Radu, Eugen ; O'Shaughnessy, Richard ; Sathyaprakash, Bangalore S. ; Van Den Broeck, Chris ; Winther, Hans A. ; Witek, Helvi ; Aghili, Mir Emad ; Alsing, Justin ; Bolen, Brett ; Bombelli, Luca ; Caudill, Sarah ; Chen, Liang ; Degollado, Juan Carlos ; Fujita, Ryuichi ; Gao, Caixia ; Gerosa, Davide ; Kamali, Saeed ; Silva, Hector O. ; Rosa, João G. ; Sadeghian, Laleh ; Sampaio, Marco ; Sotani, Hajime ; Zilhao, Miguel. / Testing general relativity with present and future astrophysical observations. In: Classical and Quantum Gravity. 2015 ; Vol. 32, No. 24.
@article{6d97dcf5be1a4f88aed4ff8b4d1635b7,
title = "Testing general relativity with present and future astrophysical observations",
abstract = "One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.",
keywords = "black holes, compact binaries, general relativity, gravitational waves, neutron stars",
author = "Emanuele Berti and Enrico Barausse and Vitor Cardoso and Leonardo Gualtieri and Paolo Pani and Ulrich Sperhake and Stein, {Leo C.} and Norbert Wex and Kent Yagi and Tessa Baker and Burgess, {C. P.} and Coelho, {Fl{\'a}vio S.} and Daniela Doneva and {De Felice}, Antonio and Ferreira, {Pedro G.} and Freire, {Paulo C C} and James Healy and Carlos Herdeiro and Michael Horbatsch and Burkhard Kleihaus and Antoine Klein and Kostas Kokkotas and Jutta Kunz and Pablo Laguna and Lang, {Ryan N.} and Li, {Tjonnie G F} and Tyson Littenberg and Andrew Matas and Saeed Mirshekari and Hirotada Okawa and Eugen Radu and Richard O'Shaughnessy and Sathyaprakash, {Bangalore S.} and {Van Den Broeck}, Chris and Winther, {Hans A.} and Helvi Witek and Aghili, {Mir Emad} and Justin Alsing and Brett Bolen and Luca Bombelli and Sarah Caudill and Liang Chen and Degollado, {Juan Carlos} and Ryuichi Fujita and Caixia Gao and Davide Gerosa and Saeed Kamali and Silva, {Hector O.} and Rosa, {Jo{\~a}o G.} and Laleh Sadeghian and Marco Sampaio and Hajime Sotani and Miguel Zilhao",
year = "2015",
month = "12",
day = "1",
doi = "10.1088/0264-9381/32/24/243001",
language = "English",
volume = "32",
journal = "Classical and Quantum Gravity",
issn = "0264-9381",
publisher = "IOP Publishing Ltd.",
number = "24",

}

TY - JOUR

T1 - Testing general relativity with present and future astrophysical observations

AU - Berti, Emanuele

AU - Barausse, Enrico

AU - Cardoso, Vitor

AU - Gualtieri, Leonardo

AU - Pani, Paolo

AU - Sperhake, Ulrich

AU - Stein, Leo C.

AU - Wex, Norbert

AU - Yagi, Kent

AU - Baker, Tessa

AU - Burgess, C. P.

AU - Coelho, Flávio S.

AU - Doneva, Daniela

AU - De Felice, Antonio

AU - Ferreira, Pedro G.

AU - Freire, Paulo C C

AU - Healy, James

AU - Herdeiro, Carlos

AU - Horbatsch, Michael

AU - Kleihaus, Burkhard

AU - Klein, Antoine

AU - Kokkotas, Kostas

AU - Kunz, Jutta

AU - Laguna, Pablo

AU - Lang, Ryan N.

AU - Li, Tjonnie G F

AU - Littenberg, Tyson

AU - Matas, Andrew

AU - Mirshekari, Saeed

AU - Okawa, Hirotada

AU - Radu, Eugen

AU - O'Shaughnessy, Richard

AU - Sathyaprakash, Bangalore S.

AU - Van Den Broeck, Chris

AU - Winther, Hans A.

AU - Witek, Helvi

AU - Aghili, Mir Emad

AU - Alsing, Justin

AU - Bolen, Brett

AU - Bombelli, Luca

AU - Caudill, Sarah

AU - Chen, Liang

AU - Degollado, Juan Carlos

AU - Fujita, Ryuichi

AU - Gao, Caixia

AU - Gerosa, Davide

AU - Kamali, Saeed

AU - Silva, Hector O.

AU - Rosa, João G.

AU - Sadeghian, Laleh

AU - Sampaio, Marco

AU - Sotani, Hajime

AU - Zilhao, Miguel

PY - 2015/12/1

Y1 - 2015/12/1

N2 - One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

AB - One century after its formulation, Einstein's general relativity (GR) has made remarkable predictions and turned out to be compatible with all experimental tests. Most of these tests probe the theory in the weak-field regime, and there are theoretical and experimental reasons to believe that GR should be modified when gravitational fields are strong and spacetime curvature is large. The best astrophysical laboratories to probe strong-field gravity are black holes and neutron stars, whether isolated or in binary systems. We review the motivations to consider extensions of GR. We present a (necessarily incomplete) catalog of modified theories of gravity for which strong-field predictions have been computed and contrasted to Einstein's theory, and we summarize our current understanding of the structure and dynamics of compact objects in these theories. We discuss current bounds on modified gravity from binary pulsar and cosmological observations, and we highlight the potential of future gravitational wave measurements to inform us on the behavior of gravity in the strong-field regime.

KW - black holes

KW - compact binaries

KW - general relativity

KW - gravitational waves

KW - neutron stars

UR - http://www.scopus.com/inward/record.url?scp=84944745333&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84944745333&partnerID=8YFLogxK

U2 - 10.1088/0264-9381/32/24/243001

DO - 10.1088/0264-9381/32/24/243001

M3 - Article

AN - SCOPUS:84944745333

VL - 32

JO - Classical and Quantum Gravity

JF - Classical and Quantum Gravity

SN - 0264-9381

IS - 24

M1 - 243001

ER -