The CALET Gamma-ray Burst Monitor (CGBM)

Kazutaka Yamaoka, Atsumasa Yoshida, Yuki Nonaka, Yoko Sakauchi, Takumi Hara, Tatsuma Yamamoto, Kunishiro Mori, Satoshi Nakahira, Taro Kotani, Yujin E. Nakagawa, Hiroshi Tomida, Shiro Ueno, Tadahisa Tamura, Shoji Torii

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    1 Citation (Scopus)


    The CALET Gamma-ray Burst Monitor (CGBM) is the secondary scientific instrument of the CALET mission to be attached to the ISS, sensitive to X and gamma-rays from 7 keV to 20 MeV. The scientific goal of the CGBM is to search out a clue to radiation mechanisms of gamma-ray bursts (GRBs) by obtaining very broadband spectra from optical to TeV gamma-rays together with the primary instrument, the calorimeter (CAL) sensitive to GeV-TeV gamma-rays, and the star camera (ASC). The CGBM sensor consists of the hard X-ray monitor (HXM) sensitive to the 7-1000 keV range and the soft gamma-ray monitor (SGM) to 100 keV-20 MeV utilizing two LaBr3 (Ce) and one BGO scintillators. The LaBr3 crystals would be employed first for GRB observations in space. The electonics box (E-box) processing signals from the sensors, is equipped with analog circuits for a wide dynamic range, onboard GRB trigger system, and 10 Mbyte memory for GRB data accumulation. In this paper, we will describe the scientific performance and the development status of the CGBM.

    Original languageEnglish
    Title of host publicationProceedings of the 32nd International Cosmic Ray Conference, ICRC 2011
    PublisherInstitute of High Energy Physics
    Number of pages4
    Publication statusPublished - 2011
    Event32nd International Cosmic Ray Conference, ICRC 2011 - Beijing
    Duration: 2011 Aug 112011 Aug 18


    Other32nd International Cosmic Ray Conference, ICRC 2011


    • CALET
    • Gamma-ray Burst
    • Instrumentation

    ASJC Scopus subject areas

    • Nuclear and High Energy Physics


    Dive into the research topics of 'The CALET Gamma-ray Burst Monitor (CGBM)'. Together they form a unique fingerprint.

    Cite this