TY - JOUR

T1 - The complex volumes of twist knots

AU - Cho, Jinseok

AU - Murakami, Jun

AU - Yokota, Yoshiyuki

PY - 2009/10

Y1 - 2009/10

N2 - For a given hyperbolic knot, the third author defined a function whose imaginary part gives the hyperbolic volume of the knot complement. We show that, for a twist knot, the function actually gives the complex volume of the knot complement using Zickert's and Neumann's theory of the extended Bloch groups and the complex volumes.

AB - For a given hyperbolic knot, the third author defined a function whose imaginary part gives the hyperbolic volume of the knot complement. We show that, for a twist knot, the function actually gives the complex volume of the knot complement using Zickert's and Neumann's theory of the extended Bloch groups and the complex volumes.

UR - http://www.scopus.com/inward/record.url?scp=77951028144&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77951028144&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-09-09906-7

DO - 10.1090/S0002-9939-09-09906-7

M3 - Article

AN - SCOPUS:77951028144

VL - 137

SP - 3533

EP - 3541

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 10

ER -