TY - JOUR
T1 - The cool seal system
T2 - A practical solution to the shaft seal problem and heat related complications with implantable rotary blood pumps
AU - Yamazaki, Kenji
AU - Mori, Toshio
AU - Tomioka, Jun
AU - Litwak, Philip
AU - Antaki, James F.
AU - Tagusari, Osamu
AU - Koyanagi, Hitoshi
AU - Griffith, Bartley P.
AU - Kormos, Robert L.
PY - 1997/9/1
Y1 - 1997/9/1
N2 - A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, an a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50°C). Once exposed to temperature exceeding 50°C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50°C, a mechanical seal would not fail in blood. Based on this 'Cool-Seal' concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40°C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized of virtually nil (<0.5 cc/day). An ultrafiltration unit integrated in the recirculating purge system continuously purifies and sterilizes the purge fluid for more than 5 months without filter change. The seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these system has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.
AB - A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, an a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50°C). Once exposed to temperature exceeding 50°C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50°C, a mechanical seal would not fail in blood. Based on this 'Cool-Seal' concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40°C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized of virtually nil (<0.5 cc/day). An ultrafiltration unit integrated in the recirculating purge system continuously purifies and sterilizes the purge fluid for more than 5 months without filter change. The seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these system has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.
UR - http://www.scopus.com/inward/record.url?scp=0031238971&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031238971&partnerID=8YFLogxK
M3 - Article
C2 - 9360108
AN - SCOPUS:0031238971
SN - 1058-2916
VL - 43
SP - M567-M571
JO - ASAIO Journal
JF - ASAIO Journal
IS - 5
ER -