The Curvature of Hand Paths in Multi-joint Movements: Examinations of Computational Theories for Trajectory Planning

Eri Nakano, Hiroshi Imamizu, Rieko Osu, Yoji Uno, Mitsuo Kawato

Research output: Contribution to journalArticle

Abstract

In multi-joint movements, possible trajectories for a given target are infinite, but actually have certain invariant features. It has been discussed whether trajectories of the human arm are planned in an extrinsic space or in an intrinsic space. Hand paths planned in the former are predicted to be always straight, while those in the latter are generally curved. Both Uno et al. and Osu et al. reported that actual hand paths tended to significantly curve for some specific arm postures, movement distances, and movement durations. We have extended the previous studies by using various initial and final positions located within a workspace and examined if the curvature of a trajectory quantitatively varies with arm posture when subjects make point to point reaching movements on a horizontal plane. Curvatures of measured hand trajectories were linearly estimated using two models, hand position and hand translation, which are represented by extrinsic coordinates, and other two models, joint angle and joint rotation, which are represented by intrinsic coordinates. In experiment I and II, movement durations were restricted, and in experiment III. movement durations were flexible and added to parameters. Movement durations and joint rotation significantly contributed to curvature. We succeeded in predicting the curvature of hand paths by using the arm posture before and after a movement. The results suggest that trajectory curvature depends on arm posture and is in accordance with predictions made under planning in the intrinsic space, rather than that in the extrinsic space. Furthermore, the result that a longer movement duration causes a larger curvature is in agreement with the predictions of Uno and Kawato, in which a longer movement duration makes paths expand toward the outer side because of an effectively larger viscosity ratio.

Original languageEnglish
Pages (from-to)126-127
Number of pages2
JournalJapanese Journal of Medical Electronics and Biological Engineering
Volume34
Issue number4
Publication statusPublished - 1996
Externally publishedYes

Fingerprint

Trajectories
Planning
Experiments
Viscosity

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

The Curvature of Hand Paths in Multi-joint Movements : Examinations of Computational Theories for Trajectory Planning. / Nakano, Eri; Imamizu, Hiroshi; Osu, Rieko; Uno, Yoji; Kawato, Mitsuo.

In: Japanese Journal of Medical Electronics and Biological Engineering, Vol. 34, No. 4, 1996, p. 126-127.

Research output: Contribution to journalArticle

@article{7dbb81b04ed6454b9cbcfc6064437528,
title = "The Curvature of Hand Paths in Multi-joint Movements: Examinations of Computational Theories for Trajectory Planning",
abstract = "In multi-joint movements, possible trajectories for a given target are infinite, but actually have certain invariant features. It has been discussed whether trajectories of the human arm are planned in an extrinsic space or in an intrinsic space. Hand paths planned in the former are predicted to be always straight, while those in the latter are generally curved. Both Uno et al. and Osu et al. reported that actual hand paths tended to significantly curve for some specific arm postures, movement distances, and movement durations. We have extended the previous studies by using various initial and final positions located within a workspace and examined if the curvature of a trajectory quantitatively varies with arm posture when subjects make point to point reaching movements on a horizontal plane. Curvatures of measured hand trajectories were linearly estimated using two models, hand position and hand translation, which are represented by extrinsic coordinates, and other two models, joint angle and joint rotation, which are represented by intrinsic coordinates. In experiment I and II, movement durations were restricted, and in experiment III. movement durations were flexible and added to parameters. Movement durations and joint rotation significantly contributed to curvature. We succeeded in predicting the curvature of hand paths by using the arm posture before and after a movement. The results suggest that trajectory curvature depends on arm posture and is in accordance with predictions made under planning in the intrinsic space, rather than that in the extrinsic space. Furthermore, the result that a longer movement duration causes a larger curvature is in agreement with the predictions of Uno and Kawato, in which a longer movement duration makes paths expand toward the outer side because of an effectively larger viscosity ratio.",
author = "Eri Nakano and Hiroshi Imamizu and Rieko Osu and Yoji Uno and Mitsuo Kawato",
year = "1996",
language = "English",
volume = "34",
pages = "126--127",
journal = "Japanese Journal of Medical Electronics and Biological Engineering",
issn = "0021-3292",
publisher = "Nihon M E Gakkai",
number = "4",

}

TY - JOUR

T1 - The Curvature of Hand Paths in Multi-joint Movements

T2 - Examinations of Computational Theories for Trajectory Planning

AU - Nakano, Eri

AU - Imamizu, Hiroshi

AU - Osu, Rieko

AU - Uno, Yoji

AU - Kawato, Mitsuo

PY - 1996

Y1 - 1996

N2 - In multi-joint movements, possible trajectories for a given target are infinite, but actually have certain invariant features. It has been discussed whether trajectories of the human arm are planned in an extrinsic space or in an intrinsic space. Hand paths planned in the former are predicted to be always straight, while those in the latter are generally curved. Both Uno et al. and Osu et al. reported that actual hand paths tended to significantly curve for some specific arm postures, movement distances, and movement durations. We have extended the previous studies by using various initial and final positions located within a workspace and examined if the curvature of a trajectory quantitatively varies with arm posture when subjects make point to point reaching movements on a horizontal plane. Curvatures of measured hand trajectories were linearly estimated using two models, hand position and hand translation, which are represented by extrinsic coordinates, and other two models, joint angle and joint rotation, which are represented by intrinsic coordinates. In experiment I and II, movement durations were restricted, and in experiment III. movement durations were flexible and added to parameters. Movement durations and joint rotation significantly contributed to curvature. We succeeded in predicting the curvature of hand paths by using the arm posture before and after a movement. The results suggest that trajectory curvature depends on arm posture and is in accordance with predictions made under planning in the intrinsic space, rather than that in the extrinsic space. Furthermore, the result that a longer movement duration causes a larger curvature is in agreement with the predictions of Uno and Kawato, in which a longer movement duration makes paths expand toward the outer side because of an effectively larger viscosity ratio.

AB - In multi-joint movements, possible trajectories for a given target are infinite, but actually have certain invariant features. It has been discussed whether trajectories of the human arm are planned in an extrinsic space or in an intrinsic space. Hand paths planned in the former are predicted to be always straight, while those in the latter are generally curved. Both Uno et al. and Osu et al. reported that actual hand paths tended to significantly curve for some specific arm postures, movement distances, and movement durations. We have extended the previous studies by using various initial and final positions located within a workspace and examined if the curvature of a trajectory quantitatively varies with arm posture when subjects make point to point reaching movements on a horizontal plane. Curvatures of measured hand trajectories were linearly estimated using two models, hand position and hand translation, which are represented by extrinsic coordinates, and other two models, joint angle and joint rotation, which are represented by intrinsic coordinates. In experiment I and II, movement durations were restricted, and in experiment III. movement durations were flexible and added to parameters. Movement durations and joint rotation significantly contributed to curvature. We succeeded in predicting the curvature of hand paths by using the arm posture before and after a movement. The results suggest that trajectory curvature depends on arm posture and is in accordance with predictions made under planning in the intrinsic space, rather than that in the extrinsic space. Furthermore, the result that a longer movement duration causes a larger curvature is in agreement with the predictions of Uno and Kawato, in which a longer movement duration makes paths expand toward the outer side because of an effectively larger viscosity ratio.

UR - http://www.scopus.com/inward/record.url?scp=1542493225&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1542493225&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:1542493225

VL - 34

SP - 126

EP - 127

JO - Japanese Journal of Medical Electronics and Biological Engineering

JF - Japanese Journal of Medical Electronics and Biological Engineering

SN - 0021-3292

IS - 4

ER -