The finite element method analysis for the stress intensity factors using a path independent Ê-integral formula

Chikayoshi Yatomi, Takuya Ueda, Shintaro Takagi, Takahiro Abe

Research output: Contribution to journalArticle

Abstract

We present a new numerical path independent Ê-integral for calculating the stress intensity factors using a known auxiliary solution. The integral is path independent in the similar manner to the well known domain independent M-integral for calculating the stress intensity factors. The E-integral is, however, path independent even if the path contains any number of crack-tip and the integral may obtain the stress intensity factors at the onset of crack kinking by the path independent integral ; therefore, the integral path can be far from the crack-tip around which the numerical solution has noticeable error : The domain M-integral may not obtain the stress intensity factors at the onset of crack kinking and may be very difficult to obtain the stress intensity factors when there exist small cracks in the neighborhood of the crack-tip. For illustrative purposes, by using finite element method, numerical examples obtaining the stress intensity factors are presented for an extending straight crack and a kinking crack.

Original languageEnglish
Pages (from-to)1031-1036
Number of pages6
JournalZairyo/Journal of the Society of Materials Science, Japan
Volume60
Issue number11
DOIs
Publication statusPublished - 2011 Nov 1
Externally publishedYes

Fingerprint

stress intensity factors
Stress intensity factors
finite element method
Finite element method
Cracks
kinking
cracks
Crack tips
crack tips

Keywords

  • Domain M-integral
  • Kinking crack
  • Path Ê-integral
  • Stress intensity factor

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Cite this

The finite element method analysis for the stress intensity factors using a path independent Ê-integral formula. / Yatomi, Chikayoshi; Ueda, Takuya; Takagi, Shintaro; Abe, Takahiro.

In: Zairyo/Journal of the Society of Materials Science, Japan, Vol. 60, No. 11, 01.11.2011, p. 1031-1036.

Research output: Contribution to journalArticle

@article{e111625e83b64b01bc10d8768ddbe6c5,
title = "The finite element method analysis for the stress intensity factors using a path independent {\^E}-integral formula",
abstract = "We present a new numerical path independent {\^E}-integral for calculating the stress intensity factors using a known auxiliary solution. The integral is path independent in the similar manner to the well known domain independent M-integral for calculating the stress intensity factors. The E-integral is, however, path independent even if the path contains any number of crack-tip and the integral may obtain the stress intensity factors at the onset of crack kinking by the path independent integral ; therefore, the integral path can be far from the crack-tip around which the numerical solution has noticeable error : The domain M-integral may not obtain the stress intensity factors at the onset of crack kinking and may be very difficult to obtain the stress intensity factors when there exist small cracks in the neighborhood of the crack-tip. For illustrative purposes, by using finite element method, numerical examples obtaining the stress intensity factors are presented for an extending straight crack and a kinking crack.",
keywords = "Domain M-integral, Kinking crack, Path {\^E}-integral, Stress intensity factor",
author = "Chikayoshi Yatomi and Takuya Ueda and Shintaro Takagi and Takahiro Abe",
year = "2011",
month = "11",
day = "1",
doi = "10.2472/jsms.60.1031",
language = "English",
volume = "60",
pages = "1031--1036",
journal = "Zairyo/Journal of the Society of Materials Science, Japan",
issn = "0514-5163",
publisher = "Society of Materials Science Japan",
number = "11",

}

TY - JOUR

T1 - The finite element method analysis for the stress intensity factors using a path independent Ê-integral formula

AU - Yatomi, Chikayoshi

AU - Ueda, Takuya

AU - Takagi, Shintaro

AU - Abe, Takahiro

PY - 2011/11/1

Y1 - 2011/11/1

N2 - We present a new numerical path independent Ê-integral for calculating the stress intensity factors using a known auxiliary solution. The integral is path independent in the similar manner to the well known domain independent M-integral for calculating the stress intensity factors. The E-integral is, however, path independent even if the path contains any number of crack-tip and the integral may obtain the stress intensity factors at the onset of crack kinking by the path independent integral ; therefore, the integral path can be far from the crack-tip around which the numerical solution has noticeable error : The domain M-integral may not obtain the stress intensity factors at the onset of crack kinking and may be very difficult to obtain the stress intensity factors when there exist small cracks in the neighborhood of the crack-tip. For illustrative purposes, by using finite element method, numerical examples obtaining the stress intensity factors are presented for an extending straight crack and a kinking crack.

AB - We present a new numerical path independent Ê-integral for calculating the stress intensity factors using a known auxiliary solution. The integral is path independent in the similar manner to the well known domain independent M-integral for calculating the stress intensity factors. The E-integral is, however, path independent even if the path contains any number of crack-tip and the integral may obtain the stress intensity factors at the onset of crack kinking by the path independent integral ; therefore, the integral path can be far from the crack-tip around which the numerical solution has noticeable error : The domain M-integral may not obtain the stress intensity factors at the onset of crack kinking and may be very difficult to obtain the stress intensity factors when there exist small cracks in the neighborhood of the crack-tip. For illustrative purposes, by using finite element method, numerical examples obtaining the stress intensity factors are presented for an extending straight crack and a kinking crack.

KW - Domain M-integral

KW - Kinking crack

KW - Path Ê-integral

KW - Stress intensity factor

UR - http://www.scopus.com/inward/record.url?scp=84863406658&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863406658&partnerID=8YFLogxK

U2 - 10.2472/jsms.60.1031

DO - 10.2472/jsms.60.1031

M3 - Article

AN - SCOPUS:84863406658

VL - 60

SP - 1031

EP - 1036

JO - Zairyo/Journal of the Society of Materials Science, Japan

JF - Zairyo/Journal of the Society of Materials Science, Japan

SN - 0514-5163

IS - 11

ER -