The impact of americium target in-core loading on reactivity characteristics and ULOF response of sodium-cooled MOX FBR

Akifumi Yamaji, Katsuyuki Kawashima, Shigeo Ohm, Tomoyasu Mizuno, Tsutomu Okubo

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The idea of recycling minor actinides (MA5) with fast breeder reactors (FBRs) is an effective way to po tentially reduce environmental burdens associated with nuclear energy production. For such FBR cores, it is necessary to find one or more promising MA loading methods that can effectively transmute MAs while mini mizing deterioration of the core performance and reduc ing the overall fuel fabrication cost. In this study, the homogeneous MA loading core with 3 wt% MAs is used as a reference design to evaluate the impact of the am ericium (Am) target in-core loading on reactivity char acteristics and unprotected loss-of-flow (ULOF) response of sodium-cooled mixed-oxide FBR. The Am target loading core of this study is designed by roughly preserving the MA inventory of the homo geneous MA loading core while placing Am and curium (Cm) to the ring-shaped target region between the inner and the outer core regions with 20 wt% content. This design can flatten core radial reactivity worth distributions and effectively reduce reactivity insertion into the core during ULOF compared with the homo geneous MA loading core. It also has relatively flat and stable radial power distributions, which allow a rela tively large coolant flow rate to be distributed to the target region. During ULOF, the power increase of the Am target loading core of this study is slower than that of the ho mogeneous MA loading core. The maximum fuel temper ature of the target region does not become particularly high compared with that of the inner core, and it is much lower than the melting point. Hence, the proposed Am target in-core loading method does not have a sign cant influence on ULOF response of the core. It is promising from the viewpoints of the reactivity characteristics and ULOF response.

Original languageEnglish
Pages (from-to)142-152
Number of pages11
JournalNuclear Technology
Volume171
Issue number2
Publication statusPublished - 2010 Aug
Externally publishedYes

Fingerprint

breeder reactors
Americium
americium
Breeder reactors
reactivity
Sodium
sodium
Curium
Reactor cores
Actinides
Nuclear energy
curium
Coolants
Melting point
Deterioration
Recycling
reactor cores
Flow rate
coolants
mixed oxides

Keywords

  • Americium target
  • Sodium-cooled FBR
  • ULOF response

ASJC Scopus subject areas

  • Nuclear Energy and Engineering
  • Condensed Matter Physics
  • Nuclear and High Energy Physics

Cite this

The impact of americium target in-core loading on reactivity characteristics and ULOF response of sodium-cooled MOX FBR. / Yamaji, Akifumi; Kawashima, Katsuyuki; Ohm, Shigeo; Mizuno, Tomoyasu; Okubo, Tsutomu.

In: Nuclear Technology, Vol. 171, No. 2, 08.2010, p. 142-152.

Research output: Contribution to journalArticle

Yamaji, Akifumi ; Kawashima, Katsuyuki ; Ohm, Shigeo ; Mizuno, Tomoyasu ; Okubo, Tsutomu. / The impact of americium target in-core loading on reactivity characteristics and ULOF response of sodium-cooled MOX FBR. In: Nuclear Technology. 2010 ; Vol. 171, No. 2. pp. 142-152.
@article{502687ddf569487f91fac78ef97a1281,
title = "The impact of americium target in-core loading on reactivity characteristics and ULOF response of sodium-cooled MOX FBR",
abstract = "The idea of recycling minor actinides (MA5) with fast breeder reactors (FBRs) is an effective way to po tentially reduce environmental burdens associated with nuclear energy production. For such FBR cores, it is necessary to find one or more promising MA loading methods that can effectively transmute MAs while mini mizing deterioration of the core performance and reduc ing the overall fuel fabrication cost. In this study, the homogeneous MA loading core with 3 wt{\%} MAs is used as a reference design to evaluate the impact of the am ericium (Am) target in-core loading on reactivity char acteristics and unprotected loss-of-flow (ULOF) response of sodium-cooled mixed-oxide FBR. The Am target loading core of this study is designed by roughly preserving the MA inventory of the homo geneous MA loading core while placing Am and curium (Cm) to the ring-shaped target region between the inner and the outer core regions with 20 wt{\%} content. This design can flatten core radial reactivity worth distributions and effectively reduce reactivity insertion into the core during ULOF compared with the homo geneous MA loading core. It also has relatively flat and stable radial power distributions, which allow a rela tively large coolant flow rate to be distributed to the target region. During ULOF, the power increase of the Am target loading core of this study is slower than that of the ho mogeneous MA loading core. The maximum fuel temper ature of the target region does not become particularly high compared with that of the inner core, and it is much lower than the melting point. Hence, the proposed Am target in-core loading method does not have a sign cant influence on ULOF response of the core. It is promising from the viewpoints of the reactivity characteristics and ULOF response.",
keywords = "Americium target, Sodium-cooled FBR, ULOF response",
author = "Akifumi Yamaji and Katsuyuki Kawashima and Shigeo Ohm and Tomoyasu Mizuno and Tsutomu Okubo",
year = "2010",
month = "8",
language = "English",
volume = "171",
pages = "142--152",
journal = "Nuclear Technology",
issn = "0029-5450",
publisher = "American Nuclear Society",
number = "2",

}

TY - JOUR

T1 - The impact of americium target in-core loading on reactivity characteristics and ULOF response of sodium-cooled MOX FBR

AU - Yamaji, Akifumi

AU - Kawashima, Katsuyuki

AU - Ohm, Shigeo

AU - Mizuno, Tomoyasu

AU - Okubo, Tsutomu

PY - 2010/8

Y1 - 2010/8

N2 - The idea of recycling minor actinides (MA5) with fast breeder reactors (FBRs) is an effective way to po tentially reduce environmental burdens associated with nuclear energy production. For such FBR cores, it is necessary to find one or more promising MA loading methods that can effectively transmute MAs while mini mizing deterioration of the core performance and reduc ing the overall fuel fabrication cost. In this study, the homogeneous MA loading core with 3 wt% MAs is used as a reference design to evaluate the impact of the am ericium (Am) target in-core loading on reactivity char acteristics and unprotected loss-of-flow (ULOF) response of sodium-cooled mixed-oxide FBR. The Am target loading core of this study is designed by roughly preserving the MA inventory of the homo geneous MA loading core while placing Am and curium (Cm) to the ring-shaped target region between the inner and the outer core regions with 20 wt% content. This design can flatten core radial reactivity worth distributions and effectively reduce reactivity insertion into the core during ULOF compared with the homo geneous MA loading core. It also has relatively flat and stable radial power distributions, which allow a rela tively large coolant flow rate to be distributed to the target region. During ULOF, the power increase of the Am target loading core of this study is slower than that of the ho mogeneous MA loading core. The maximum fuel temper ature of the target region does not become particularly high compared with that of the inner core, and it is much lower than the melting point. Hence, the proposed Am target in-core loading method does not have a sign cant influence on ULOF response of the core. It is promising from the viewpoints of the reactivity characteristics and ULOF response.

AB - The idea of recycling minor actinides (MA5) with fast breeder reactors (FBRs) is an effective way to po tentially reduce environmental burdens associated with nuclear energy production. For such FBR cores, it is necessary to find one or more promising MA loading methods that can effectively transmute MAs while mini mizing deterioration of the core performance and reduc ing the overall fuel fabrication cost. In this study, the homogeneous MA loading core with 3 wt% MAs is used as a reference design to evaluate the impact of the am ericium (Am) target in-core loading on reactivity char acteristics and unprotected loss-of-flow (ULOF) response of sodium-cooled mixed-oxide FBR. The Am target loading core of this study is designed by roughly preserving the MA inventory of the homo geneous MA loading core while placing Am and curium (Cm) to the ring-shaped target region between the inner and the outer core regions with 20 wt% content. This design can flatten core radial reactivity worth distributions and effectively reduce reactivity insertion into the core during ULOF compared with the homo geneous MA loading core. It also has relatively flat and stable radial power distributions, which allow a rela tively large coolant flow rate to be distributed to the target region. During ULOF, the power increase of the Am target loading core of this study is slower than that of the ho mogeneous MA loading core. The maximum fuel temper ature of the target region does not become particularly high compared with that of the inner core, and it is much lower than the melting point. Hence, the proposed Am target in-core loading method does not have a sign cant influence on ULOF response of the core. It is promising from the viewpoints of the reactivity characteristics and ULOF response.

KW - Americium target

KW - Sodium-cooled FBR

KW - ULOF response

UR - http://www.scopus.com/inward/record.url?scp=77956140269&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77956140269&partnerID=8YFLogxK

M3 - Article

VL - 171

SP - 142

EP - 152

JO - Nuclear Technology

JF - Nuclear Technology

SN - 0029-5450

IS - 2

ER -