The inversion formula of polylogarithms and the riemann-hilbert problem

Shu Oi, Kimio Ueno

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    1 Citation (Scopus)

    Abstract

    In this article, we set up a method of reconstructing the polylogarithms Lik(z) from zeta values ζ(k) via the Riemann-Hilbert problem. This is referred to as "a recursive Riemann-Hilbert problem of additive type." Moreover, we suggest a framework of interpreting the connection problem of the Knizhnik-Zamolodchikov equation of one variable as a Riemann-Hilbert problem.

    Original languageEnglish
    Title of host publicationSpringer Proceedings in Mathematics and Statistics
    PublisherSpringer New York LLC
    Pages491-496
    Number of pages6
    Volume40
    ISBN (Print)9781447148623
    DOIs
    Publication statusPublished - 2013

    Fingerprint

    Polylogarithms
    Riemann-Hilbert Problem
    Inversion Formula
    Connection Problem

    ASJC Scopus subject areas

    • Mathematics(all)

    Cite this

    Oi, S., & Ueno, K. (2013). The inversion formula of polylogarithms and the riemann-hilbert problem. In Springer Proceedings in Mathematics and Statistics (Vol. 40, pp. 491-496). Springer New York LLC. https://doi.org/10.1007/978-1-4471-4863-0_20

    The inversion formula of polylogarithms and the riemann-hilbert problem. / Oi, Shu; Ueno, Kimio.

    Springer Proceedings in Mathematics and Statistics. Vol. 40 Springer New York LLC, 2013. p. 491-496.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Oi, S & Ueno, K 2013, The inversion formula of polylogarithms and the riemann-hilbert problem. in Springer Proceedings in Mathematics and Statistics. vol. 40, Springer New York LLC, pp. 491-496. https://doi.org/10.1007/978-1-4471-4863-0_20
    Oi S, Ueno K. The inversion formula of polylogarithms and the riemann-hilbert problem. In Springer Proceedings in Mathematics and Statistics. Vol. 40. Springer New York LLC. 2013. p. 491-496 https://doi.org/10.1007/978-1-4471-4863-0_20
    Oi, Shu ; Ueno, Kimio. / The inversion formula of polylogarithms and the riemann-hilbert problem. Springer Proceedings in Mathematics and Statistics. Vol. 40 Springer New York LLC, 2013. pp. 491-496
    @inproceedings{ba76b3ffe77041658256fe0b54b69baf,
    title = "The inversion formula of polylogarithms and the riemann-hilbert problem",
    abstract = "In this article, we set up a method of reconstructing the polylogarithms Lik(z) from zeta values ζ(k) via the Riemann-Hilbert problem. This is referred to as {"}a recursive Riemann-Hilbert problem of additive type.{"} Moreover, we suggest a framework of interpreting the connection problem of the Knizhnik-Zamolodchikov equation of one variable as a Riemann-Hilbert problem.",
    author = "Shu Oi and Kimio Ueno",
    year = "2013",
    doi = "10.1007/978-1-4471-4863-0_20",
    language = "English",
    isbn = "9781447148623",
    volume = "40",
    pages = "491--496",
    booktitle = "Springer Proceedings in Mathematics and Statistics",
    publisher = "Springer New York LLC",

    }

    TY - GEN

    T1 - The inversion formula of polylogarithms and the riemann-hilbert problem

    AU - Oi, Shu

    AU - Ueno, Kimio

    PY - 2013

    Y1 - 2013

    N2 - In this article, we set up a method of reconstructing the polylogarithms Lik(z) from zeta values ζ(k) via the Riemann-Hilbert problem. This is referred to as "a recursive Riemann-Hilbert problem of additive type." Moreover, we suggest a framework of interpreting the connection problem of the Knizhnik-Zamolodchikov equation of one variable as a Riemann-Hilbert problem.

    AB - In this article, we set up a method of reconstructing the polylogarithms Lik(z) from zeta values ζ(k) via the Riemann-Hilbert problem. This is referred to as "a recursive Riemann-Hilbert problem of additive type." Moreover, we suggest a framework of interpreting the connection problem of the Knizhnik-Zamolodchikov equation of one variable as a Riemann-Hilbert problem.

    UR - http://www.scopus.com/inward/record.url?scp=84883389328&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84883389328&partnerID=8YFLogxK

    U2 - 10.1007/978-1-4471-4863-0_20

    DO - 10.1007/978-1-4471-4863-0_20

    M3 - Conference contribution

    AN - SCOPUS:84883389328

    SN - 9781447148623

    VL - 40

    SP - 491

    EP - 496

    BT - Springer Proceedings in Mathematics and Statistics

    PB - Springer New York LLC

    ER -