The neck region of the myosin motor domain acts as a lever arm to generate movement

Taro Q.P. Uyeda*, Paul D. Abramson, James A. Spudich

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

390 Citations (Scopus)

Abstract

The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long α-helical portion of the heavy chain. The swinging neck-lever model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The ΔRLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The ΔBLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain.

Original languageEnglish
Pages (from-to)4459-4464
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume93
Issue number9
DOIs
Publication statusPublished - 1996 Apr 30
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The neck region of the myosin motor domain acts as a lever arm to generate movement'. Together they form a unique fingerprint.

Cite this