The performance of the jet trigger for the ATLAS detector during 2011 data taking

The ATLAS Collaboration

    Research output: Contribution to journalArticle

    8 Citations (Scopus)

    Abstract

    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.

    Original languageEnglish
    Article number526
    JournalEuropean Physical Journal C
    Volume76
    Issue number10
    DOIs
    Publication statusPublished - 2016 Oct 1

    Fingerprint

    actuators
    Detectors
    detectors
    energy
    collisions
    Heavy ions
    ionic collisions
    center of mass
    thresholds

    ASJC Scopus subject areas

    • Engineering (miscellaneous)
    • Physics and Astronomy (miscellaneous)

    Cite this

    The performance of the jet trigger for the ATLAS detector during 2011 data taking. / The ATLAS Collaboration.

    In: European Physical Journal C, Vol. 76, No. 10, 526, 01.10.2016.

    Research output: Contribution to journalArticle

    @article{bba53791addb44e9b910feb6de3a55bb,
    title = "The performance of the jet trigger for the ATLAS detector during 2011 data taking",
    abstract = "The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 {\%} in the central region and better than 2.5 {\%} in the forward direction.",
    author = "{The ATLAS Collaboration} and G. Aad and B. Abbott and J. Abdallah and O. Abdinov and B. Abeloos and R. Aben and M. Abolins and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and L. Adamczyk and Adams, {D. L.} and J. Adelman and S. Adomeit and T. Adye and Affolder, {A. A.} and T. Agatonovic-Jovin and J. Agricola and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and H. Akerstedt and {\AA}kesson, {T. P A} and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and S. Albrand and Verzini, {M. J Alconada} and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and G. Alexander and T. Alexopoulos and M. Alhroob and M. Aliev and G. Alimonti and J. Alison and Alkire, {S. P.} and Allbrooke, {B. M M} and Allen, {B. W.} and Allport, {P. P.} and A. Aloisio and T. Iizawa and Masahiro Morinaga and Kohei Yorita",
    year = "2016",
    month = "10",
    day = "1",
    doi = "10.1140/epjc/s10052-016-4325-0",
    language = "English",
    volume = "76",
    journal = "European Physical Journal C",
    issn = "1434-6044",
    publisher = "Springer New York",
    number = "10",

    }

    TY - JOUR

    T1 - The performance of the jet trigger for the ATLAS detector during 2011 data taking

    AU - The ATLAS Collaboration

    AU - Aad, G.

    AU - Abbott, B.

    AU - Abdallah, J.

    AU - Abdinov, O.

    AU - Abeloos, B.

    AU - Aben, R.

    AU - Abolins, M.

    AU - AbouZeid, O. S.

    AU - Abraham, N. L.

    AU - Abramowicz, H.

    AU - Abreu, H.

    AU - Abreu, R.

    AU - Abulaiti, Y.

    AU - Acharya, B. S.

    AU - Adamczyk, L.

    AU - Adams, D. L.

    AU - Adelman, J.

    AU - Adomeit, S.

    AU - Adye, T.

    AU - Affolder, A. A.

    AU - Agatonovic-Jovin, T.

    AU - Agricola, J.

    AU - Aguilar-Saavedra, J. A.

    AU - Ahlen, S. P.

    AU - Ahmadov, F.

    AU - Aielli, G.

    AU - Akerstedt, H.

    AU - Åkesson, T. P A

    AU - Akimov, A. V.

    AU - Alberghi, G. L.

    AU - Albert, J.

    AU - Albrand, S.

    AU - Verzini, M. J Alconada

    AU - Aleksa, M.

    AU - Aleksandrov, I. N.

    AU - Alexa, C.

    AU - Alexander, G.

    AU - Alexopoulos, T.

    AU - Alhroob, M.

    AU - Aliev, M.

    AU - Alimonti, G.

    AU - Alison, J.

    AU - Alkire, S. P.

    AU - Allbrooke, B. M M

    AU - Allen, B. W.

    AU - Allport, P. P.

    AU - Aloisio, A.

    AU - Iizawa, T.

    AU - Morinaga, Masahiro

    AU - Yorita, Kohei

    PY - 2016/10/1

    Y1 - 2016/10/1

    N2 - The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.

    AB - The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.

    UR - http://www.scopus.com/inward/record.url?scp=84989214531&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84989214531&partnerID=8YFLogxK

    U2 - 10.1140/epjc/s10052-016-4325-0

    DO - 10.1140/epjc/s10052-016-4325-0

    M3 - Article

    AN - SCOPUS:84989214531

    VL - 76

    JO - European Physical Journal C

    JF - European Physical Journal C

    SN - 1434-6044

    IS - 10

    M1 - 526

    ER -