The role of attention in motion extrapolation: Are moving objects 'corrected' or flashed objects attentionally delayed?

Beena Khurana, Katsumi Watanabe, Romi Nijhawan

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

Objects flashed in alignment with moving objects appear to lag behind [Nijhawan, 1994 Nature (London) 370 256-257]. Could this 'flash-lag' effect be due to attentional delays in bringing flashed items to perceptual awareness [Titchener, 1908/1973 Lectures on the Elementary Psychology of Feeling and Attention first published 1908 (New York: Macmillan); reprinted 1973 (New York: Arno Press)]? We overtly manipulated attentional allocation in three experiments to address the following questions: Is the flash-lag effect affected when attention is (a) focused on a single event in the presence of multiple events, (b) distributed over multiple events, and (c) diverted from the flashed object? To address the first two questions, five rings, moving along a circular path, were presented while observers attentively tracked one or multiple rings under four conditions: the ring in which the disk was flashed was (i) known or (ii) unknown (randomly selected from the set of five); location of the flashed disk was (i) known or (ii) unknown (randomly selected from ten locations). The third question was investigated by using two moving objects in a cost - benefit cueing paradigm. An arrow cued, with 70% or 80% validity, the position of the flashed object. Observers performed two tasks: (a) reacted as quickly as possible to flash onset; (b) reported the flash-lag effect. We obtained a significant and unaltered flash-lag effect under all the attentional conditions we employed. Furthermore, though reaction times were significantly shorter for validly cued flashes, the flash-lag effect remained uninfluenced by cue validity, indicating that quicker responses to validly cued locations may be due to the shortening of post-perceptual delays in motor responses rather than the perceptual facilitation. We conclude that the computations that give rise to the flash-lag effect are independent of attentional deployment.

Original languageEnglish
Pages (from-to)675-692
Number of pages18
JournalPerception
Volume29
Issue number6
Publication statusPublished - 2000
Externally publishedYes

Fingerprint

Extrapolation
Reaction Time
Cost-Benefit Analysis
Cues
Emotions
Psychology
Costs
Experiments

ASJC Scopus subject areas

  • Psychology(all)
  • Experimental and Cognitive Psychology

Cite this

The role of attention in motion extrapolation : Are moving objects 'corrected' or flashed objects attentionally delayed? / Khurana, Beena; Watanabe, Katsumi; Nijhawan, Romi.

In: Perception, Vol. 29, No. 6, 2000, p. 675-692.

Research output: Contribution to journalArticle

@article{83ea8f0ab65845a9a6228b44ef87276d,
title = "The role of attention in motion extrapolation: Are moving objects 'corrected' or flashed objects attentionally delayed?",
abstract = "Objects flashed in alignment with moving objects appear to lag behind [Nijhawan, 1994 Nature (London) 370 256-257]. Could this 'flash-lag' effect be due to attentional delays in bringing flashed items to perceptual awareness [Titchener, 1908/1973 Lectures on the Elementary Psychology of Feeling and Attention first published 1908 (New York: Macmillan); reprinted 1973 (New York: Arno Press)]? We overtly manipulated attentional allocation in three experiments to address the following questions: Is the flash-lag effect affected when attention is (a) focused on a single event in the presence of multiple events, (b) distributed over multiple events, and (c) diverted from the flashed object? To address the first two questions, five rings, moving along a circular path, were presented while observers attentively tracked one or multiple rings under four conditions: the ring in which the disk was flashed was (i) known or (ii) unknown (randomly selected from the set of five); location of the flashed disk was (i) known or (ii) unknown (randomly selected from ten locations). The third question was investigated by using two moving objects in a cost - benefit cueing paradigm. An arrow cued, with 70{\%} or 80{\%} validity, the position of the flashed object. Observers performed two tasks: (a) reacted as quickly as possible to flash onset; (b) reported the flash-lag effect. We obtained a significant and unaltered flash-lag effect under all the attentional conditions we employed. Furthermore, though reaction times were significantly shorter for validly cued flashes, the flash-lag effect remained uninfluenced by cue validity, indicating that quicker responses to validly cued locations may be due to the shortening of post-perceptual delays in motor responses rather than the perceptual facilitation. We conclude that the computations that give rise to the flash-lag effect are independent of attentional deployment.",
author = "Beena Khurana and Katsumi Watanabe and Romi Nijhawan",
year = "2000",
language = "English",
volume = "29",
pages = "675--692",
journal = "Perception",
issn = "0301-0066",
publisher = "Pion Ltd.",
number = "6",

}

TY - JOUR

T1 - The role of attention in motion extrapolation

T2 - Are moving objects 'corrected' or flashed objects attentionally delayed?

AU - Khurana, Beena

AU - Watanabe, Katsumi

AU - Nijhawan, Romi

PY - 2000

Y1 - 2000

N2 - Objects flashed in alignment with moving objects appear to lag behind [Nijhawan, 1994 Nature (London) 370 256-257]. Could this 'flash-lag' effect be due to attentional delays in bringing flashed items to perceptual awareness [Titchener, 1908/1973 Lectures on the Elementary Psychology of Feeling and Attention first published 1908 (New York: Macmillan); reprinted 1973 (New York: Arno Press)]? We overtly manipulated attentional allocation in three experiments to address the following questions: Is the flash-lag effect affected when attention is (a) focused on a single event in the presence of multiple events, (b) distributed over multiple events, and (c) diverted from the flashed object? To address the first two questions, five rings, moving along a circular path, were presented while observers attentively tracked one or multiple rings under four conditions: the ring in which the disk was flashed was (i) known or (ii) unknown (randomly selected from the set of five); location of the flashed disk was (i) known or (ii) unknown (randomly selected from ten locations). The third question was investigated by using two moving objects in a cost - benefit cueing paradigm. An arrow cued, with 70% or 80% validity, the position of the flashed object. Observers performed two tasks: (a) reacted as quickly as possible to flash onset; (b) reported the flash-lag effect. We obtained a significant and unaltered flash-lag effect under all the attentional conditions we employed. Furthermore, though reaction times were significantly shorter for validly cued flashes, the flash-lag effect remained uninfluenced by cue validity, indicating that quicker responses to validly cued locations may be due to the shortening of post-perceptual delays in motor responses rather than the perceptual facilitation. We conclude that the computations that give rise to the flash-lag effect are independent of attentional deployment.

AB - Objects flashed in alignment with moving objects appear to lag behind [Nijhawan, 1994 Nature (London) 370 256-257]. Could this 'flash-lag' effect be due to attentional delays in bringing flashed items to perceptual awareness [Titchener, 1908/1973 Lectures on the Elementary Psychology of Feeling and Attention first published 1908 (New York: Macmillan); reprinted 1973 (New York: Arno Press)]? We overtly manipulated attentional allocation in three experiments to address the following questions: Is the flash-lag effect affected when attention is (a) focused on a single event in the presence of multiple events, (b) distributed over multiple events, and (c) diverted from the flashed object? To address the first two questions, five rings, moving along a circular path, were presented while observers attentively tracked one or multiple rings under four conditions: the ring in which the disk was flashed was (i) known or (ii) unknown (randomly selected from the set of five); location of the flashed disk was (i) known or (ii) unknown (randomly selected from ten locations). The third question was investigated by using two moving objects in a cost - benefit cueing paradigm. An arrow cued, with 70% or 80% validity, the position of the flashed object. Observers performed two tasks: (a) reacted as quickly as possible to flash onset; (b) reported the flash-lag effect. We obtained a significant and unaltered flash-lag effect under all the attentional conditions we employed. Furthermore, though reaction times were significantly shorter for validly cued flashes, the flash-lag effect remained uninfluenced by cue validity, indicating that quicker responses to validly cued locations may be due to the shortening of post-perceptual delays in motor responses rather than the perceptual facilitation. We conclude that the computations that give rise to the flash-lag effect are independent of attentional deployment.

UR - http://www.scopus.com/inward/record.url?scp=0033654018&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033654018&partnerID=8YFLogxK

M3 - Article

C2 - 11040951

AN - SCOPUS:0033654018

VL - 29

SP - 675

EP - 692

JO - Perception

JF - Perception

SN - 0301-0066

IS - 6

ER -