The self-similar solution for draining in the thin film equation

Jan Bouwe Van Den Berg*, Mark Bowen, John R. King, M. M.A. El-Sheikh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We investigate self-similar solutions of the thin film equation in the case of zero contact angle boundary conditions on a finite domain. We prove existence and uniqueness of such a solution and determine the asymptotic behaviour as the exponent in the equation approaches the critical value at which zero contact angle boundary conditions become untenable. Numerical and power-series solutions are also presented.

Original languageEnglish
Pages (from-to)329-346
Number of pages18
JournalEuropean Journal of Applied Mathematics
Volume15
Issue number3
DOIs
Publication statusPublished - 2004 Jun
Externally publishedYes

ASJC Scopus subject areas

  • Applied Mathematics

Fingerprint

Dive into the research topics of 'The self-similar solution for draining in the thin film equation'. Together they form a unique fingerprint.

Cite this