Theoretical study on the selective fluorescence of PicoGreen: Binding models and photophysical properties

Masaki Okoshi, Patchreenart Saparpakorn, Yuta Takada, Supa Hannongbua, Hiromi Nakai

    Research output: Contribution to journalArticle

    2 Citations (Scopus)

    Abstract

    PicoGreen (PG) is used as a probe to selectively quantitate double-stranded (ds-) DNA because it shows unique fluorescence enhancement when complexed with DNA. By binding to ds- and single-stranded (ss-) DNA, the quantum yields of PGDNA complexes become remarkably larger than that of a free molecule. In the present theoretical study, the fluorescence enhancement mechanism of PGDNA complexes was investigated using molecular docking simulations and ab initio quantum chemical methods. The binding energies between PG and ds-DNA were calculated to be larger than those in the case of PG and ss-DNA owing to the existence of an extra π-π stacking interaction. Nonradiative deactivation paths through conical intersections between the ground and the first excited states were obtained for a free PG molecule, while steric repulsions between PG and DNA hindered such deactivation processes in the case of PGDNA complexes.

    Original languageEnglish
    Pages (from-to)267-273
    Number of pages7
    JournalBulletin of the Chemical Society of Japan
    Volume87
    Issue number2
    DOIs
    Publication statusPublished - 2014

      Fingerprint

    ASJC Scopus subject areas

    • Chemistry(all)

    Cite this