Theory of electron differentiation, flat dispersion and pseudogap phenomena

M. Imada*, S. Onoda

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Aspects of electron critical differentiation are clarified in the proximity of the Mott insulator. The flattening of the quasiparticle dispersion appears around momenta (π,0) and (0,π) on square lattices and determines the criticality of the metal-insulator transition with the suppressed coherence in that momentum region of quasiparticles. Such coherence suppression at the same time causes an instability to the superconducting state if a proper incoherent process is retained. The d-wave pairing interaction is generated from such retained processes without disturbance from the coherent single-particle excitations. Pseudogap phenomena widely observed in the underdoped cuprates are then naturally understood from the mode-mode coupling of d-wave superconducting (dSC) fluctuations with antiferromagnetic (AFM) ones. When we assume the existence of a strong d-wave pairing force repulsively competing with AFM fluctuations under the formation of flat and damped single-particle dispersion, we reproduce basic properties of the pseudogap seen in the magnetic resonance, neutron scattering, angle resolved photoemission and tunneling measurements in the cuprates.

Original languageEnglish
Pages (from-to)47-51
Number of pages5
JournalJournal of Physics and Chemistry of Solids
Volume62
Issue number1-2
DOIs
Publication statusPublished - 2001 Jan
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Theory of electron differentiation, flat dispersion and pseudogap phenomena'. Together they form a unique fingerprint.

Cite this