Thermal conductivity of amorphous indium-gallium-zinc oxide thin films

Toru Yoshikawa, Takashi Yagi, Nobuto Oka, Junjun Jia, Yuichiro Yamashita, Koichiro Hattori, Yutaka Seino, Naoyuki Taketoshi, Tetsuya Baba, Yuzo Shigesato

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

We investigated the thermal conductivity of 200-nm-thick amorphous indium-gallium-zinc-oxide (a-IGZO) films. Films with a chemical composition of In : Ga : Zn = 1 : 1 : 0:6 were prepared by dc magnetron sputtering using an IGZO ceramic target and an Ar-O2 sputtering gas. The carrier density of the films was systematically controlled from 1014 to > 10 19 cm-3 by varying the O2 flow ratio. Their Hall mobility was slightly higher than 10 cm2.V-1.s -1. Those films were sandwiched between 100-nm-thick Mo layers; their thermal diffusivity, measured by a pulsed light heating thermoreflectance technique, was ∼5.4 × 10-7 m2.s-1 and was almost independent of the carrier density. The average thermal conductivity was 1.4W.m-1.K-1.

Original languageEnglish
Article number021101
JournalApplied Physics Express
Volume6
Issue number2
DOIs
Publication statusPublished - 2013 Feb 1
Externally publishedYes

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Thermal conductivity of amorphous indium-gallium-zinc oxide thin films'. Together they form a unique fingerprint.

  • Cite this

    Yoshikawa, T., Yagi, T., Oka, N., Jia, J., Yamashita, Y., Hattori, K., Seino, Y., Taketoshi, N., Baba, T., & Shigesato, Y. (2013). Thermal conductivity of amorphous indium-gallium-zinc oxide thin films. Applied Physics Express, 6(2), [021101]. https://doi.org/10.7567/APEX.6.021101