Abstract
We investigate steady states of macroscopic quantum systems under dissipation not obeying the detailed balance condition. We argue that the Gibbs state at an effective temperature gives a good description of the steady state provided that the system Hamiltonian obeys the eigenstate thermalization hypothesis (ETH) and the perturbation theory in the weak system-environment coupling is valid in the thermodynamic limit. We derive a criterion to guarantee the validity of the perturbation theory, which is satisfied in the thermodynamic limit for sufficiently weak dissipation when the Liouvillian is gapped for bulk-dissipated systems, while the perturbation theory breaks down in boundary-dissipated chaotic systems due to the presence of diffusive transports. We numerically confirm these theoretical predictions. This paper suggests a connection between steady states of macroscopic open quantum systems and the ETH.
Original language | English |
---|---|
Journal | Unknown Journal |
Publication status | Published - 2018 Dec 23 |
ASJC Scopus subject areas
- General