Thermodynamic investigation of asynchronous open inverse air cycle integrated with compressed air energy storage

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

An integrated system for heating, cooling and compressed air energy storage (CAES) is analyzed from a thermodynamic point of view. The system is based on asynchronous air compression and expansion, in order to take advantage from the daily ambient temperature oscillations and energy cost variations. The analysis is intentionally kept on a fundamental level, without explicit reference to specific components, in order to enlarge the choice of potential applications. Effects of losses in compressor, expander and heat exchangers, as well as heat transfer in the CAES, are included. The proposed system, once optimized and experimentally validated, could become viable options in the wide arena of demand-side energy management.

Original languageEnglish
Title of host publication14th IIR Gustav-Lorentzen Conference on Natural Fluids, GL 2020 - Proceedings
PublisherInternational Institute of Refrigeration
Pages129-134
Number of pages6
ISBN (Electronic)9782362150401
DOIs
Publication statusPublished - 2020
Event14th IIR Gustav-Lorentzen Conference on Natural Fluids, GL 2020 - Virtual, Kyoto, Japan
Duration: 2020 Dec 72020 Dec 9

Publication series

NameRefrigeration Science and Technology
Volume2020-December
ISSN (Print)0151-1637

Conference

Conference14th IIR Gustav-Lorentzen Conference on Natural Fluids, GL 2020
Country/TerritoryJapan
CityVirtual, Kyoto
Period20/12/720/12/9

Keywords

  • Air-refrigerant
  • Asynchronous
  • CAES Energy Storage
  • Thermodynamic Investigation

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Thermodynamic investigation of asynchronous open inverse air cycle integrated with compressed air energy storage'. Together they form a unique fingerprint.

Cite this