Herramientas para la inferencia causal de encuestas de innovación de corte transversal con variables continuas o discretas: Teoría y aplicaciones

Translated title of the contribution: Tools for causal inference from cross-sectional innovation surveys with continuous or discrete variables: Theory and applications

Alex Coad, Dominik Janzing, Paul Nightingale

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This paper presents a new statistical toolkit by applying three techniques for data-driven causal inference from the machine learning community that are little- known among economists and innovation scholars: a conditional independencebased approach, additive noise models, and non-algorithmic inference by hand. We include three applications to CIS data to investigate public funding schemes for R & D investment, information sources for innovation, and innovation expenditures and firm growth. Preliminary results provide causal interpretations of some previously- observed correlations. Our statistical 'toolkit' could be a useful complement to existing techniques.

Translated title of the contributionTools for causal inference from cross-sectional innovation surveys with continuous or discrete variables: Theory and applications
Original languageSpanish
Pages (from-to)779-808
Number of pages30
JournalCuadernos de Economia (Colombia)
Volume37
Issue number75
DOIs
Publication statusPublished - 2018
Externally publishedYes

Keywords

  • Additive noise models
  • Apprentissage automatique (machine learning)
  • Aprendizado automático (machine learning)
  • Aprendizaje automático (machine learning)
  • Causal inference
  • Directed acyclic graphs
  • Encuestas de innovación
  • Enquêtes d'innovation
  • Grafos acíclicos dirigidos
  • Graphes acycliques dirigés
  • Gráficos acíclicos dirigidos
  • Inferencia causal
  • Inferência causal
  • Inférence causale
  • Innovation surveys
  • Machine learning
  • Modelos de ruido aditivo
  • Modelos de ruído aditivo
  • Modèles de bruit additif
  • Pesquisas sobre inovação

ASJC Scopus subject areas

  • Arts and Humanities (miscellaneous)
  • Social Sciences (miscellaneous)
  • Economics, Econometrics and Finance(all)

Fingerprint Dive into the research topics of 'Tools for causal inference from cross-sectional innovation surveys with continuous or discrete variables: Theory and applications'. Together they form a unique fingerprint.

  • Cite this