TORCHAUDIO: BUILDING BLOCKS FOR AUDIO AND SPEECH PROCESSING

Yao Yuan Yang, Moto Hira, Zhaoheng Ni, Artyom Astafurov, Caroline Chen, Christian Puhrsch, David Pollack, Dmitriy Genzel, Donny Greenberg, Edward Z. Yang, Jason Lian, Jeff Hwang, Ji Chen, Peter Goldsborough, Sean Narenthiran, Shinji Watanabe, Soumith Chintala, Vincent Quenneville-Bélair

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

This document describes version 0.10 of TorchAudio: building blocks for machine learning applications in the audio and speech processing domain. The objective of TorchAudio is to accelerate the development and deployment of machine learning applications for researchers and engineers by providing off-the-shelf building blocks. The building blocks are designed to be GPU-compatible, automatically differentiable, and production-ready. TorchAudio can be easily installed from Python Package Index repository and the source code is publicly available under a BSD-2-Clause License (as of September 2021) at https://github.com/pytorch/audio. In this document, we provide an overview of the design principles, functionalities, and benchmarks of TorchAudio. We also benchmark our implementation of several audio and speech operations and models. We verify through the benchmarks that our implementations of various operations and models are valid and perform similarly to other publicly available implementations.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6982-6986
Number of pages5
ISBN (Electronic)9781665405409
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: 2022 May 232022 May 27

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period22/5/2322/5/27

Keywords

  • Audio Processing
  • Open-Source Toolkit
  • Speech Recognition
  • Text-to-Speech

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'TORCHAUDIO: BUILDING BLOCKS FOR AUDIO AND SPEECH PROCESSING'. Together they form a unique fingerprint.

Cite this