Tree-structured decoding for solving math word problems

Qianying Liu, Wenyu Guan, Sujian Li, Daisuke Kawahara

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Automatically solving math word problems is an interesting research topic that needs to bridge natural language descriptions and formal math equations. Previous studies introduced end-to-end neural network methods, but these approaches did not efficiently consider an important characteristic of the equation, i.e., an abstract syntax tree. To address this problem, we propose a tree-structured decoding method that generates the abstract syntax tree of the equation in a top-down manner. In addition, our approach can automatically stop during decoding without a redundant stop token. The experimental results show that our method achieves single model state-of-the-art performance on Math23K, which is the largest dataset on this task.

Original languageEnglish
Title of host publicationEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics
Pages2370-2379
Number of pages10
ISBN (Electronic)9781950737901
Publication statusPublished - 2020
Externally publishedYes
Event2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 - Hong Kong, China
Duration: 2019 Nov 32019 Nov 7

Publication series

NameEMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference

Conference

Conference2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
CountryChina
CityHong Kong
Period19/11/319/11/7

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint Dive into the research topics of 'Tree-structured decoding for solving math word problems'. Together they form a unique fingerprint.

  • Cite this

    Liu, Q., Guan, W., Li, S., & Kawahara, D. (2020). Tree-structured decoding for solving math word problems. In EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference (pp. 2370-2379). (EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference). Association for Computational Linguistics.