Ultrafast Electronic Band Gap Control in an Excitonic Insulator

Selene Mor, Marc Herzog, Denis GoleŽ, Philipp Werner, Martin Eckstein, Naoyuki Katayama, Minoru Nohara, Hide Takagi, Takashi Mizokawa, Claude Monney, Julia Stähler

    Research output: Contribution to journalArticle

    38 Citations (Scopus)

    Abstract

    We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta2NiSe5 investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of FC=0.2 mJ cm-2, the band gap narrows transiently, while it is enhanced above FC. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta2NiSe5, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta2NiSe5 with light on the femtosecond time scale.

    Original languageEnglish
    Article number086401
    JournalPhysical Review Letters
    Volume119
    Issue number8
    DOIs
    Publication statusPublished - 2017 Aug 23

    Fingerprint

    insulators
    electronics
    photoelectron spectroscopy
    electronic structure
    excitation

    ASJC Scopus subject areas

    • Physics and Astronomy(all)

    Cite this

    Mor, S., Herzog, M., GoleŽ, D., Werner, P., Eckstein, M., Katayama, N., ... Stähler, J. (2017). Ultrafast Electronic Band Gap Control in an Excitonic Insulator. Physical Review Letters, 119(8), [086401]. https://doi.org/10.1103/PhysRevLett.119.086401

    Ultrafast Electronic Band Gap Control in an Excitonic Insulator. / Mor, Selene; Herzog, Marc; GoleŽ, Denis; Werner, Philipp; Eckstein, Martin; Katayama, Naoyuki; Nohara, Minoru; Takagi, Hide; Mizokawa, Takashi; Monney, Claude; Stähler, Julia.

    In: Physical Review Letters, Vol. 119, No. 8, 086401, 23.08.2017.

    Research output: Contribution to journalArticle

    Mor, S, Herzog, M, GoleŽ, D, Werner, P, Eckstein, M, Katayama, N, Nohara, M, Takagi, H, Mizokawa, T, Monney, C & Stähler, J 2017, 'Ultrafast Electronic Band Gap Control in an Excitonic Insulator', Physical Review Letters, vol. 119, no. 8, 086401. https://doi.org/10.1103/PhysRevLett.119.086401
    Mor S, Herzog M, GoleŽ D, Werner P, Eckstein M, Katayama N et al. Ultrafast Electronic Band Gap Control in an Excitonic Insulator. Physical Review Letters. 2017 Aug 23;119(8). 086401. https://doi.org/10.1103/PhysRevLett.119.086401
    Mor, Selene ; Herzog, Marc ; GoleŽ, Denis ; Werner, Philipp ; Eckstein, Martin ; Katayama, Naoyuki ; Nohara, Minoru ; Takagi, Hide ; Mizokawa, Takashi ; Monney, Claude ; Stähler, Julia. / Ultrafast Electronic Band Gap Control in an Excitonic Insulator. In: Physical Review Letters. 2017 ; Vol. 119, No. 8.
    @article{1d2d8b5990654e449bb53d131bc95947,
    title = "Ultrafast Electronic Band Gap Control in an Excitonic Insulator",
    abstract = "We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta2NiSe5 investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of FC=0.2 mJ cm-2, the band gap narrows transiently, while it is enhanced above FC. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta2NiSe5, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta2NiSe5 with light on the femtosecond time scale.",
    author = "Selene Mor and Marc Herzog and Denis GoleŽ and Philipp Werner and Martin Eckstein and Naoyuki Katayama and Minoru Nohara and Hide Takagi and Takashi Mizokawa and Claude Monney and Julia St{\"a}hler",
    year = "2017",
    month = "8",
    day = "23",
    doi = "10.1103/PhysRevLett.119.086401",
    language = "English",
    volume = "119",
    journal = "Physical Review Letters",
    issn = "0031-9007",
    publisher = "American Physical Society",
    number = "8",

    }

    TY - JOUR

    T1 - Ultrafast Electronic Band Gap Control in an Excitonic Insulator

    AU - Mor, Selene

    AU - Herzog, Marc

    AU - GoleŽ, Denis

    AU - Werner, Philipp

    AU - Eckstein, Martin

    AU - Katayama, Naoyuki

    AU - Nohara, Minoru

    AU - Takagi, Hide

    AU - Mizokawa, Takashi

    AU - Monney, Claude

    AU - Stähler, Julia

    PY - 2017/8/23

    Y1 - 2017/8/23

    N2 - We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta2NiSe5 investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of FC=0.2 mJ cm-2, the band gap narrows transiently, while it is enhanced above FC. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta2NiSe5, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta2NiSe5 with light on the femtosecond time scale.

    AB - We report on the nonequilibrium dynamics of the electronic structure of the layered semiconductor Ta2NiSe5 investigated by time- and angle-resolved photoelectron spectroscopy. We show that below the critical excitation density of FC=0.2 mJ cm-2, the band gap narrows transiently, while it is enhanced above FC. Hartree-Fock calculations reveal that this effect can be explained by the presence of the low-temperature excitonic insulator phase of Ta2NiSe5, whose order parameter is connected to the gap size. This work demonstrates the ability to manipulate the band gap of Ta2NiSe5 with light on the femtosecond time scale.

    UR - http://www.scopus.com/inward/record.url?scp=85029216244&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85029216244&partnerID=8YFLogxK

    U2 - 10.1103/PhysRevLett.119.086401

    DO - 10.1103/PhysRevLett.119.086401

    M3 - Article

    AN - SCOPUS:85029216244

    VL - 119

    JO - Physical Review Letters

    JF - Physical Review Letters

    SN - 0031-9007

    IS - 8

    M1 - 086401

    ER -