Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner

Qingqing Sun, Takayuki Ishii, Koki Kanehira, Takeshi Sato, Akiyoshi Taniguchi

    Research output: Contribution to journalArticle

    13 Citations (Scopus)

    Abstract

    The size of titanium dioxide (TiO2) nanoparticles is a vital parameter that determines their cytotoxicity. However, most reported studies have employed irregular shapes and sizes of TiO2 nanoparticles, as it is difficult to produce nanoparticles of suitable sizes for research. We produced good model TiO2 nanoparticles of uniform shape and size for use in studying their cytotoxicity. In this work, spherical, uniform polyethylene glycol-modified TiO2 (TiO2-PEG) nanoparticles of differing sizes (100, 200, and 300 nm) were prepared using the sol-gel method. A size-dependent decrease in cell viability was observed with increasing nanoparticle size. Furthermore, apoptosis was found to be positively associated with nanoparticle size, as evidenced by an increase in caspase-3 activity with increasing nanoparticle size. Larger nanoparticles exhibited higher cellular uptake, suggesting that larger nanoparticles more strongly induce apoptosis. In addition, the cellular uptake of different sizes of nanoparticles was energy dependent, suggesting that there are size-dependent uptake pathways. We found that 100 and 200 nm (but not 300 nm) nanoparticles were taken up via clathrin-mediated endocytosis. These results utilizing uniform nanoparticles suggest that the size-dependent cytotoxicity of nanoparticles involves active cellular uptake, caspase-3 activation, and apoptosis in the epithelial cell line (NCI-H292). These findings will hopefully aid in the future design and safe use of nanoparticles.

    Original languageEnglish
    Pages (from-to)1014-1021
    Number of pages8
    JournalBiomaterials Science
    Volume5
    Issue number5
    DOIs
    Publication statusPublished - 2017 May 1

      Fingerprint

    ASJC Scopus subject areas

    • Biomedical Engineering
    • Materials Science(all)

    Cite this