Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity

Jishan Fan, Tohru Ozawa

    Research output: Contribution to journalArticle

    8 Citations (Scopus)

    Abstract

    We prove the uniqueness for weak solutions of the time-dependent 2-D Ginzburg-Landau model for superconductivity with L 2 initial data in the case of Coulomb gauge. This question was left open in Tang and Wang (Physica D, 88:139-166, 1995). We also prove the uniqueness of the 3-D radially symmetric solution in bounded annular domain with the choice of Lorentz gauge and L 2 initial data.

    Original languageEnglish
    Pages (from-to)453-459
    Number of pages7
    JournalZeitschrift fur Angewandte Mathematik und Physik
    Volume63
    Issue number3
    DOIs
    Publication statusPublished - 2012 Jun

    Fingerprint

    Ginzburg-Landau Model
    Superconductivity
    uniqueness
    Gages
    Weak Solution
    Gauge
    superconductivity
    Uniqueness
    Annular Domains
    Radially Symmetric Solutions
    3D
    Bounded Domain

    Keywords

    • Coulomb gauge
    • Ginzburg-Landau model
    • Lorentz gauge
    • Superconductivity
    • Uniqueness

    ASJC Scopus subject areas

    • Mathematics(all)
    • Applied Mathematics
    • Physics and Astronomy(all)

    Cite this

    Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity. / Fan, Jishan; Ozawa, Tohru.

    In: Zeitschrift fur Angewandte Mathematik und Physik, Vol. 63, No. 3, 06.2012, p. 453-459.

    Research output: Contribution to journalArticle

    @article{7455ba271f6a46d2ad582e057354417b,
    title = "Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity",
    abstract = "We prove the uniqueness for weak solutions of the time-dependent 2-D Ginzburg-Landau model for superconductivity with L 2 initial data in the case of Coulomb gauge. This question was left open in Tang and Wang (Physica D, 88:139-166, 1995). We also prove the uniqueness of the 3-D radially symmetric solution in bounded annular domain with the choice of Lorentz gauge and L 2 initial data.",
    keywords = "Coulomb gauge, Ginzburg-Landau model, Lorentz gauge, Superconductivity, Uniqueness",
    author = "Jishan Fan and Tohru Ozawa",
    year = "2012",
    month = "6",
    doi = "10.1007/s00033-011-0164-x",
    language = "English",
    volume = "63",
    pages = "453--459",
    journal = "Zeitschrift fur Angewandte Mathematik und Physik",
    issn = "0044-2275",
    publisher = "Birkhauser Verlag Basel",
    number = "3",

    }

    TY - JOUR

    T1 - Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity

    AU - Fan, Jishan

    AU - Ozawa, Tohru

    PY - 2012/6

    Y1 - 2012/6

    N2 - We prove the uniqueness for weak solutions of the time-dependent 2-D Ginzburg-Landau model for superconductivity with L 2 initial data in the case of Coulomb gauge. This question was left open in Tang and Wang (Physica D, 88:139-166, 1995). We also prove the uniqueness of the 3-D radially symmetric solution in bounded annular domain with the choice of Lorentz gauge and L 2 initial data.

    AB - We prove the uniqueness for weak solutions of the time-dependent 2-D Ginzburg-Landau model for superconductivity with L 2 initial data in the case of Coulomb gauge. This question was left open in Tang and Wang (Physica D, 88:139-166, 1995). We also prove the uniqueness of the 3-D radially symmetric solution in bounded annular domain with the choice of Lorentz gauge and L 2 initial data.

    KW - Coulomb gauge

    KW - Ginzburg-Landau model

    KW - Lorentz gauge

    KW - Superconductivity

    KW - Uniqueness

    UR - http://www.scopus.com/inward/record.url?scp=84861772752&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84861772752&partnerID=8YFLogxK

    U2 - 10.1007/s00033-011-0164-x

    DO - 10.1007/s00033-011-0164-x

    M3 - Article

    AN - SCOPUS:84861772752

    VL - 63

    SP - 453

    EP - 459

    JO - Zeitschrift fur Angewandte Mathematik und Physik

    JF - Zeitschrift fur Angewandte Mathematik und Physik

    SN - 0044-2275

    IS - 3

    ER -