### Abstract

A generic second-order scalar-tensor theory contains a nonlinear derivative self-interaction of the scalar degree of freedom à la Galileon models, which allows for the Vainshtein screening mechanism. We investigate this effect on subhorizon scales in a cosmological background, based on the most general second-order scalar-tensor theory. Our analysis takes into account all the relevant nonlinear terms and the effect of metric perturbations consistently. We derive an explicit form of Newton's constant, which in general is time-dependent and hence is constrained from observations, as suggested earlier. It is argued that in the most general case the inverse-square law cannot be reproduced on the smallest scales. Some applications of our results are also presented.

Original language | English |
---|---|

Article number | 024023 |

Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |

Volume | 85 |

Issue number | 2 |

DOIs | |

Publication status | Published - 2012 Jan 13 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Nuclear and High Energy Physics
- Physics and Astronomy (miscellaneous)

### Cite this

*Physical Review D - Particles, Fields, Gravitation and Cosmology*,

*85*(2), [024023]. https://doi.org/10.1103/PhysRevD.85.024023

**Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory.** / Kimura, Rampei; Kobayashi, Tsutomu; Yamamoto, Kazuhiro.

Research output: Contribution to journal › Article

*Physical Review D - Particles, Fields, Gravitation and Cosmology*, vol. 85, no. 2, 024023. https://doi.org/10.1103/PhysRevD.85.024023

}

TY - JOUR

T1 - Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory

AU - Kimura, Rampei

AU - Kobayashi, Tsutomu

AU - Yamamoto, Kazuhiro

PY - 2012/1/13

Y1 - 2012/1/13

N2 - A generic second-order scalar-tensor theory contains a nonlinear derivative self-interaction of the scalar degree of freedom à la Galileon models, which allows for the Vainshtein screening mechanism. We investigate this effect on subhorizon scales in a cosmological background, based on the most general second-order scalar-tensor theory. Our analysis takes into account all the relevant nonlinear terms and the effect of metric perturbations consistently. We derive an explicit form of Newton's constant, which in general is time-dependent and hence is constrained from observations, as suggested earlier. It is argued that in the most general case the inverse-square law cannot be reproduced on the smallest scales. Some applications of our results are also presented.

AB - A generic second-order scalar-tensor theory contains a nonlinear derivative self-interaction of the scalar degree of freedom à la Galileon models, which allows for the Vainshtein screening mechanism. We investigate this effect on subhorizon scales in a cosmological background, based on the most general second-order scalar-tensor theory. Our analysis takes into account all the relevant nonlinear terms and the effect of metric perturbations consistently. We derive an explicit form of Newton's constant, which in general is time-dependent and hence is constrained from observations, as suggested earlier. It is argued that in the most general case the inverse-square law cannot be reproduced on the smallest scales. Some applications of our results are also presented.

UR - http://www.scopus.com/inward/record.url?scp=84862683960&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862683960&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.85.024023

DO - 10.1103/PhysRevD.85.024023

M3 - Article

VL - 85

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 2

M1 - 024023

ER -