Vibrational studies on electronic structures in metallic and insulating phases of the Cu complexes of substituted dicyanoquinonediimines (DCNQI). A comparison with the cases of the Li and Ba complexes

Yoshihiro Yamakita, Yukio Furukawa, Akiko Kobayashi, Mitsuo Tasumi, Reizo Kato, Hayao Kobayashi

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Electronic structures in metallic and insulating phases of the Li, Cu, and Ba complexes of 2,5-R1,R2-DCNQI [R1=R 2=Br (abbreviated as DBr) or R1=R2=CH 3 (abbreviated as DMe); DCNQI=N,N′-dicyanoquinonediimine; 2,5- is usually omitted] have been studied by observing temperature dependencies of their infrared absorption bands between 295 and 23 K. At room temperature, the wave numbers (ṽi) of infrared absorption bands of R 1,R2-DCNQI and its Li and Ba complexes are linearly correlated with the degrees of charge transfer (ρ) (ρ=- 0.5 and -1.0e for the Li and Ba complexes, respectively). The ṽi-ρ relationships indicate that the ρ value for the Cu complexes is -0.67e. This result is consistent with the previously established view that the Cu cations in the Cu complexes at room temperature are in a mixed-valence state of Cu 1.33+. In the infrared spectrum of Cu(DBr-DCNQI)2 at room temperature, no electron-molecular vibration (EMV) coupling bands are observed. Below the metal-insulator (M-I) transition temperature (TMI), EMV bands grow continuously and the ordinary infrared bands observed at room temperature gradually split into three bands with decreasing temperature. Similarly, the infrared bands of Li(DBr-DCNQI)2 split into two bands. These splittings are due to an inhomogeneous charge distribution in the DCNQI columns produced by the freezing of charge-density wave (CDW). The peak-to-peak amplitudes of CDWs in the DCNQI columns estimated by use of the ṽi-ρ relationships are 0.08±0.04 and 0.40±0.04e, respectively, for the Li and Cu complexes of DBr-DCNQI. The state of the frozen CDW is inferred from the number of split bands. Based on the observed continuous change of the infrared spectra of Cu(DBr-DCNQI)2 and the discontinuous changes of other quantities such as x-ray satellite reflections, lattice parameters, and magnetic susceptibilities, the M-I transition in Cu(DBr-DCNQI)2 may be described as follows: (1) above TMI the charges on Cu cations (two Cu1+'s: one Cu 2+) are dynamically averaged to + 1.33e through the Cu⋯N≡C bridge. (2) At TMI the charges abruptly localize in the order of (Cu1+⋯Cu2+⋯Cu 1+⋯)n. At the same time, the CDWs begin to be frozen in the DCNQI columns. (3) As temperature decreases below TMI, the order of the frozen CDW develops gradually. In contrast to these changes in Cu(DBr-DCNQI)2, neither EMV bands nor band splittings are observed in the infrared spectra of Cu(DMe-DCNQI)2 at low temperatures. Instead, almost all bands show negative absorption lobes on their low-wave number sides and become asymmetric. This asymmetrization is due to interactions between the vibrational levels and low-lying continuous electronic levels responsible for a broad band observed in the 1600-800 cm-1 region.

Original languageEnglish
Pages (from-to)2449-2457
Number of pages9
JournalThe Journal of chemical physics
Volume100
Issue number4
Publication statusPublished - 1994
Externally publishedYes

Fingerprint

Electronic structure
electronic structure
Molecular vibrations
Charge density waves
Infrared radiation
Metal insulator transition
Infrared absorption
Temperature
Cations
Absorption spectra
infrared spectra
room temperature
vibration
infrared absorption
Electrons
Electron temperature
Charge distribution
Distillation columns
insulators
Magnetic susceptibility

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Cite this

Vibrational studies on electronic structures in metallic and insulating phases of the Cu complexes of substituted dicyanoquinonediimines (DCNQI). A comparison with the cases of the Li and Ba complexes. / Yamakita, Yoshihiro; Furukawa, Yukio; Kobayashi, Akiko; Tasumi, Mitsuo; Kato, Reizo; Kobayashi, Hayao.

In: The Journal of chemical physics, Vol. 100, No. 4, 1994, p. 2449-2457.

Research output: Contribution to journalArticle

@article{86f410f9fd4b4f8fa2a8f43a072e45bf,
title = "Vibrational studies on electronic structures in metallic and insulating phases of the Cu complexes of substituted dicyanoquinonediimines (DCNQI). A comparison with the cases of the Li and Ba complexes",
abstract = "Electronic structures in metallic and insulating phases of the Li, Cu, and Ba complexes of 2,5-R1,R2-DCNQI [R1=R 2=Br (abbreviated as DBr) or R1=R2=CH 3 (abbreviated as DMe); DCNQI=N,N′-dicyanoquinonediimine; 2,5- is usually omitted] have been studied by observing temperature dependencies of their infrared absorption bands between 295 and 23 K. At room temperature, the wave numbers (ṽi) of infrared absorption bands of R 1,R2-DCNQI and its Li and Ba complexes are linearly correlated with the degrees of charge transfer (ρ) (ρ=- 0.5 and -1.0e for the Li and Ba complexes, respectively). The ṽi-ρ relationships indicate that the ρ value for the Cu complexes is -0.67e. This result is consistent with the previously established view that the Cu cations in the Cu complexes at room temperature are in a mixed-valence state of Cu 1.33+. In the infrared spectrum of Cu(DBr-DCNQI)2 at room temperature, no electron-molecular vibration (EMV) coupling bands are observed. Below the metal-insulator (M-I) transition temperature (TMI), EMV bands grow continuously and the ordinary infrared bands observed at room temperature gradually split into three bands with decreasing temperature. Similarly, the infrared bands of Li(DBr-DCNQI)2 split into two bands. These splittings are due to an inhomogeneous charge distribution in the DCNQI columns produced by the freezing of charge-density wave (CDW). The peak-to-peak amplitudes of CDWs in the DCNQI columns estimated by use of the ṽi-ρ relationships are 0.08±0.04 and 0.40±0.04e, respectively, for the Li and Cu complexes of DBr-DCNQI. The state of the frozen CDW is inferred from the number of split bands. Based on the observed continuous change of the infrared spectra of Cu(DBr-DCNQI)2 and the discontinuous changes of other quantities such as x-ray satellite reflections, lattice parameters, and magnetic susceptibilities, the M-I transition in Cu(DBr-DCNQI)2 may be described as follows: (1) above TMI the charges on Cu cations (two Cu1+'s: one Cu 2+) are dynamically averaged to + 1.33e through the Cu⋯N≡C bridge. (2) At TMI the charges abruptly localize in the order of (Cu1+⋯Cu2+⋯Cu 1+⋯)n. At the same time, the CDWs begin to be frozen in the DCNQI columns. (3) As temperature decreases below TMI, the order of the frozen CDW develops gradually. In contrast to these changes in Cu(DBr-DCNQI)2, neither EMV bands nor band splittings are observed in the infrared spectra of Cu(DMe-DCNQI)2 at low temperatures. Instead, almost all bands show negative absorption lobes on their low-wave number sides and become asymmetric. This asymmetrization is due to interactions between the vibrational levels and low-lying continuous electronic levels responsible for a broad band observed in the 1600-800 cm-1 region.",
author = "Yoshihiro Yamakita and Yukio Furukawa and Akiko Kobayashi and Mitsuo Tasumi and Reizo Kato and Hayao Kobayashi",
year = "1994",
language = "English",
volume = "100",
pages = "2449--2457",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "4",

}

TY - JOUR

T1 - Vibrational studies on electronic structures in metallic and insulating phases of the Cu complexes of substituted dicyanoquinonediimines (DCNQI). A comparison with the cases of the Li and Ba complexes

AU - Yamakita, Yoshihiro

AU - Furukawa, Yukio

AU - Kobayashi, Akiko

AU - Tasumi, Mitsuo

AU - Kato, Reizo

AU - Kobayashi, Hayao

PY - 1994

Y1 - 1994

N2 - Electronic structures in metallic and insulating phases of the Li, Cu, and Ba complexes of 2,5-R1,R2-DCNQI [R1=R 2=Br (abbreviated as DBr) or R1=R2=CH 3 (abbreviated as DMe); DCNQI=N,N′-dicyanoquinonediimine; 2,5- is usually omitted] have been studied by observing temperature dependencies of their infrared absorption bands between 295 and 23 K. At room temperature, the wave numbers (ṽi) of infrared absorption bands of R 1,R2-DCNQI and its Li and Ba complexes are linearly correlated with the degrees of charge transfer (ρ) (ρ=- 0.5 and -1.0e for the Li and Ba complexes, respectively). The ṽi-ρ relationships indicate that the ρ value for the Cu complexes is -0.67e. This result is consistent with the previously established view that the Cu cations in the Cu complexes at room temperature are in a mixed-valence state of Cu 1.33+. In the infrared spectrum of Cu(DBr-DCNQI)2 at room temperature, no electron-molecular vibration (EMV) coupling bands are observed. Below the metal-insulator (M-I) transition temperature (TMI), EMV bands grow continuously and the ordinary infrared bands observed at room temperature gradually split into three bands with decreasing temperature. Similarly, the infrared bands of Li(DBr-DCNQI)2 split into two bands. These splittings are due to an inhomogeneous charge distribution in the DCNQI columns produced by the freezing of charge-density wave (CDW). The peak-to-peak amplitudes of CDWs in the DCNQI columns estimated by use of the ṽi-ρ relationships are 0.08±0.04 and 0.40±0.04e, respectively, for the Li and Cu complexes of DBr-DCNQI. The state of the frozen CDW is inferred from the number of split bands. Based on the observed continuous change of the infrared spectra of Cu(DBr-DCNQI)2 and the discontinuous changes of other quantities such as x-ray satellite reflections, lattice parameters, and magnetic susceptibilities, the M-I transition in Cu(DBr-DCNQI)2 may be described as follows: (1) above TMI the charges on Cu cations (two Cu1+'s: one Cu 2+) are dynamically averaged to + 1.33e through the Cu⋯N≡C bridge. (2) At TMI the charges abruptly localize in the order of (Cu1+⋯Cu2+⋯Cu 1+⋯)n. At the same time, the CDWs begin to be frozen in the DCNQI columns. (3) As temperature decreases below TMI, the order of the frozen CDW develops gradually. In contrast to these changes in Cu(DBr-DCNQI)2, neither EMV bands nor band splittings are observed in the infrared spectra of Cu(DMe-DCNQI)2 at low temperatures. Instead, almost all bands show negative absorption lobes on their low-wave number sides and become asymmetric. This asymmetrization is due to interactions between the vibrational levels and low-lying continuous electronic levels responsible for a broad band observed in the 1600-800 cm-1 region.

AB - Electronic structures in metallic and insulating phases of the Li, Cu, and Ba complexes of 2,5-R1,R2-DCNQI [R1=R 2=Br (abbreviated as DBr) or R1=R2=CH 3 (abbreviated as DMe); DCNQI=N,N′-dicyanoquinonediimine; 2,5- is usually omitted] have been studied by observing temperature dependencies of their infrared absorption bands between 295 and 23 K. At room temperature, the wave numbers (ṽi) of infrared absorption bands of R 1,R2-DCNQI and its Li and Ba complexes are linearly correlated with the degrees of charge transfer (ρ) (ρ=- 0.5 and -1.0e for the Li and Ba complexes, respectively). The ṽi-ρ relationships indicate that the ρ value for the Cu complexes is -0.67e. This result is consistent with the previously established view that the Cu cations in the Cu complexes at room temperature are in a mixed-valence state of Cu 1.33+. In the infrared spectrum of Cu(DBr-DCNQI)2 at room temperature, no electron-molecular vibration (EMV) coupling bands are observed. Below the metal-insulator (M-I) transition temperature (TMI), EMV bands grow continuously and the ordinary infrared bands observed at room temperature gradually split into three bands with decreasing temperature. Similarly, the infrared bands of Li(DBr-DCNQI)2 split into two bands. These splittings are due to an inhomogeneous charge distribution in the DCNQI columns produced by the freezing of charge-density wave (CDW). The peak-to-peak amplitudes of CDWs in the DCNQI columns estimated by use of the ṽi-ρ relationships are 0.08±0.04 and 0.40±0.04e, respectively, for the Li and Cu complexes of DBr-DCNQI. The state of the frozen CDW is inferred from the number of split bands. Based on the observed continuous change of the infrared spectra of Cu(DBr-DCNQI)2 and the discontinuous changes of other quantities such as x-ray satellite reflections, lattice parameters, and magnetic susceptibilities, the M-I transition in Cu(DBr-DCNQI)2 may be described as follows: (1) above TMI the charges on Cu cations (two Cu1+'s: one Cu 2+) are dynamically averaged to + 1.33e through the Cu⋯N≡C bridge. (2) At TMI the charges abruptly localize in the order of (Cu1+⋯Cu2+⋯Cu 1+⋯)n. At the same time, the CDWs begin to be frozen in the DCNQI columns. (3) As temperature decreases below TMI, the order of the frozen CDW develops gradually. In contrast to these changes in Cu(DBr-DCNQI)2, neither EMV bands nor band splittings are observed in the infrared spectra of Cu(DMe-DCNQI)2 at low temperatures. Instead, almost all bands show negative absorption lobes on their low-wave number sides and become asymmetric. This asymmetrization is due to interactions between the vibrational levels and low-lying continuous electronic levels responsible for a broad band observed in the 1600-800 cm-1 region.

UR - http://www.scopus.com/inward/record.url?scp=0001381357&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001381357&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0001381357

VL - 100

SP - 2449

EP - 2457

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 4

ER -