Weak Neumann implies Stokes

Matthias Geissert, Horst Heck, Matthias Georg Hieber, Okihiro Sawada

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Consider a domain ω ⊂ℝ n with possibly non compact but uniform C 3-boundary and assume that the Helmholtz projection P exists on L p(W) for some 1 <p <∞. It is shown that the Stokes operator in L p(W) generates an analytic semigroup on L σ p(ω) admitting maximal L q-L p-regularity. Moreover, for u 0 ε L σ p(W) there exists a unique local mild solution to the Navier-Stokes equations on domains of this form provided p > n.

Original languageEnglish
Pages (from-to)75-100
Number of pages26
JournalJournal fur die Reine und Angewandte Mathematik
Issue number669
DOIs
Publication statusPublished - 2012 Aug
Externally publishedYes

Fingerprint

Hermann Von Helmholtz
Stokes
Projection
Imply

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Weak Neumann implies Stokes. / Geissert, Matthias; Heck, Horst; Hieber, Matthias Georg; Sawada, Okihiro.

In: Journal fur die Reine und Angewandte Mathematik, No. 669, 08.2012, p. 75-100.

Research output: Contribution to journalArticle

Geissert, Matthias ; Heck, Horst ; Hieber, Matthias Georg ; Sawada, Okihiro. / Weak Neumann implies Stokes. In: Journal fur die Reine und Angewandte Mathematik. 2012 ; No. 669. pp. 75-100.
@article{32b0e5a23b7345ea9fd984f09ff5dc16,
title = "Weak Neumann implies Stokes",
abstract = "Consider a domain ω ⊂ℝ n with possibly non compact but uniform C 3-boundary and assume that the Helmholtz projection P exists on L p(W) for some 1 p(W) generates an analytic semigroup on L σ p(ω) admitting maximal L q-L p-regularity. Moreover, for u 0 ε L σ p(W) there exists a unique local mild solution to the Navier-Stokes equations on domains of this form provided p > n.",
author = "Matthias Geissert and Horst Heck and Hieber, {Matthias Georg} and Okihiro Sawada",
year = "2012",
month = "8",
doi = "10.1515/CRELLE.2011.150",
language = "English",
pages = "75--100",
journal = "Journal fur die Reine und Angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH & Co. KG",
number = "669",

}

TY - JOUR

T1 - Weak Neumann implies Stokes

AU - Geissert, Matthias

AU - Heck, Horst

AU - Hieber, Matthias Georg

AU - Sawada, Okihiro

PY - 2012/8

Y1 - 2012/8

N2 - Consider a domain ω ⊂ℝ n with possibly non compact but uniform C 3-boundary and assume that the Helmholtz projection P exists on L p(W) for some 1 p(W) generates an analytic semigroup on L σ p(ω) admitting maximal L q-L p-regularity. Moreover, for u 0 ε L σ p(W) there exists a unique local mild solution to the Navier-Stokes equations on domains of this form provided p > n.

AB - Consider a domain ω ⊂ℝ n with possibly non compact but uniform C 3-boundary and assume that the Helmholtz projection P exists on L p(W) for some 1 p(W) generates an analytic semigroup on L σ p(ω) admitting maximal L q-L p-regularity. Moreover, for u 0 ε L σ p(W) there exists a unique local mild solution to the Navier-Stokes equations on domains of this form provided p > n.

UR - http://www.scopus.com/inward/record.url?scp=84870214473&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84870214473&partnerID=8YFLogxK

U2 - 10.1515/CRELLE.2011.150

DO - 10.1515/CRELLE.2011.150

M3 - Article

AN - SCOPUS:84870214473

SP - 75

EP - 100

JO - Journal fur die Reine und Angewandte Mathematik

JF - Journal fur die Reine und Angewandte Mathematik

SN - 0075-4102

IS - 669

ER -