Abstract
Let hn denote the class number of ℚ(2cos(27π/2 n+2)). Weber proved that hn is odd for all n ≥ 1. We claim that if I is a prime number less than 107, then for all n≥ 1, ℓ does not divide hn.
Original language | English |
---|---|
Pages (from-to) | 213-222 |
Number of pages | 10 |
Journal | Experimental Mathematics |
Volume | 18 |
Issue number | 2 |
Publication status | Published - 2009 |
Fingerprint
Keywords
- Class number
- Computation
ASJC Scopus subject areas
- Mathematics(all)
Cite this
Weber's class number problem in the cyclotomic ℤ2-extension of ℚ. / Fukuda, Takashi; Komatsu, Keiichi.
In: Experimental Mathematics, Vol. 18, No. 2, 2009, p. 213-222.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Weber's class number problem in the cyclotomic ℤ2-extension of ℚ
AU - Fukuda, Takashi
AU - Komatsu, Keiichi
PY - 2009
Y1 - 2009
N2 - Let hn denote the class number of ℚ(2cos(27π/2 n+2)). Weber proved that hn is odd for all n ≥ 1. We claim that if I is a prime number less than 107, then for all n≥ 1, ℓ does not divide hn.
AB - Let hn denote the class number of ℚ(2cos(27π/2 n+2)). Weber proved that hn is odd for all n ≥ 1. We claim that if I is a prime number less than 107, then for all n≥ 1, ℓ does not divide hn.
KW - Class number
KW - Computation
UR - http://www.scopus.com/inward/record.url?scp=68949110186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=68949110186&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:68949110186
VL - 18
SP - 213
EP - 222
JO - Experimental Mathematics
JF - Experimental Mathematics
SN - 1058-6458
IS - 2
ER -