When are the Rees algebras of parameter ideals almost Gorenstein graded rings?

Shiro Goto, Mehran Rahimi, Naoki Taniguchi, Hoang Le Truong

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Let A be a Cohen-Macaulay local ring with dimA = d ≥ 3, possessing the canonical module KA. Let a1, a2,..., ar (3 ≤ r ≤ d) be a subsystem of parameters of A, and set Q = (a1, a2,...,ar). We show that if the Rees algebra R(Q) of Q is an almost Gorenstein graded ring, then A is a regular local ring and a1, a2,...,ar is a part of a regular system of parameters of A.

Original languageEnglish
Pages (from-to)655-666
Number of pages12
JournalKyoto Journal of Mathematics
Volume57
Issue number3
DOIs
Publication statusPublished - 2017 Sep 1
Externally publishedYes

Fingerprint

Rees Algebra
Gorenstein Ring
Graded Ring
Canonical Module
Regular Local Ring
Cohen-Macaulay Ring
Local Ring
Subsystem

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

When are the Rees algebras of parameter ideals almost Gorenstein graded rings? / Goto, Shiro; Rahimi, Mehran; Taniguchi, Naoki; Le Truong, Hoang.

In: Kyoto Journal of Mathematics, Vol. 57, No. 3, 01.09.2017, p. 655-666.

Research output: Contribution to journalArticle

Goto, Shiro ; Rahimi, Mehran ; Taniguchi, Naoki ; Le Truong, Hoang. / When are the Rees algebras of parameter ideals almost Gorenstein graded rings?. In: Kyoto Journal of Mathematics. 2017 ; Vol. 57, No. 3. pp. 655-666.
@article{3762b026f042463a84208890837881ab,
title = "When are the Rees algebras of parameter ideals almost Gorenstein graded rings?",
abstract = "Let A be a Cohen-Macaulay local ring with dimA = d ≥ 3, possessing the canonical module KA. Let a1, a2,..., ar (3 ≤ r ≤ d) be a subsystem of parameters of A, and set Q = (a1, a2,...,ar). We show that if the Rees algebra R(Q) of Q is an almost Gorenstein graded ring, then A is a regular local ring and a1, a2,...,ar is a part of a regular system of parameters of A.",
author = "Shiro Goto and Mehran Rahimi and Naoki Taniguchi and {Le Truong}, Hoang",
year = "2017",
month = "9",
day = "1",
doi = "10.1215/21562261-2017-0010",
language = "English",
volume = "57",
pages = "655--666",
journal = "Kyoto Journal of Mathematics",
issn = "2156-2261",
publisher = "Kyoto University",
number = "3",

}

TY - JOUR

T1 - When are the Rees algebras of parameter ideals almost Gorenstein graded rings?

AU - Goto, Shiro

AU - Rahimi, Mehran

AU - Taniguchi, Naoki

AU - Le Truong, Hoang

PY - 2017/9/1

Y1 - 2017/9/1

N2 - Let A be a Cohen-Macaulay local ring with dimA = d ≥ 3, possessing the canonical module KA. Let a1, a2,..., ar (3 ≤ r ≤ d) be a subsystem of parameters of A, and set Q = (a1, a2,...,ar). We show that if the Rees algebra R(Q) of Q is an almost Gorenstein graded ring, then A is a regular local ring and a1, a2,...,ar is a part of a regular system of parameters of A.

AB - Let A be a Cohen-Macaulay local ring with dimA = d ≥ 3, possessing the canonical module KA. Let a1, a2,..., ar (3 ≤ r ≤ d) be a subsystem of parameters of A, and set Q = (a1, a2,...,ar). We show that if the Rees algebra R(Q) of Q is an almost Gorenstein graded ring, then A is a regular local ring and a1, a2,...,ar is a part of a regular system of parameters of A.

UR - http://www.scopus.com/inward/record.url?scp=85025807643&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85025807643&partnerID=8YFLogxK

U2 - 10.1215/21562261-2017-0010

DO - 10.1215/21562261-2017-0010

M3 - Article

AN - SCOPUS:85025807643

VL - 57

SP - 655

EP - 666

JO - Kyoto Journal of Mathematics

JF - Kyoto Journal of Mathematics

SN - 2156-2261

IS - 3

ER -