3D terrain reconstruction by small Unmanned Aerial Vehicle using SIFT-based monocular SLAM

Taro Suzuki*, Yoshiharu Amano, Takumi Hashizume, Shinji Suzuki

*この研究の対応する著者

研究成果: Article査読

14 被引用数 (Scopus)

抄録

This paper describes a Simultaneous Localization And Mapping (SLAM) algorithm using a monocular camera for a small Unmanned Aerial Vehicle (UAV). A small UAV has attracted the attention for effective means of the collecting aerial information. However, there are few practical applications due to its small payloads for the 3D measurement. We propose extended Kalman filter SLAM to increase UAV position and attitude data and to construct 3D terrain maps using a small monocular camera. We propose 3D measurement based on Scale-Invariant Feature Transform (SIFT) triangulation features extracted from captured images. Field-experiment results show that our proposal effectively estimates position and attitude of the UAV and construct the 3D terrain map.

本文言語English
ページ(範囲)292-301
ページ数10
ジャーナルJournal of Robotics and Mechatronics
23
2
DOI
出版ステータスPublished - 2011 4月

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 電子工学および電気工学

フィンガープリント

「3D terrain reconstruction by small Unmanned Aerial Vehicle using SIFT-based monocular SLAM」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル