抄録
This paper describes a Simultaneous Localization And Mapping (SLAM) algorithm using a monocular camera for a small Unmanned Aerial Vehicle (UAV). A small UAV has attracted the attention for effective means of the collecting aerial information. However, there are few practical applications due to its small payloads for the 3D measurement. We propose extended Kalman filter SLAM to increase UAV position and attitude data and to construct 3D terrain maps using a small monocular camera. We propose 3D measurement based on Scale-Invariant Feature Transform (SIFT) triangulation features extracted from captured images. Field-experiment results show that our proposal effectively estimates position and attitude of the UAV and construct the 3D terrain map.
本文言語 | English |
---|---|
ページ(範囲) | 292-301 |
ページ数 | 10 |
ジャーナル | Journal of Robotics and Mechatronics |
巻 | 23 |
号 | 2 |
DOI | |
出版ステータス | Published - 2011 4月 |
ASJC Scopus subject areas
- コンピュータ サイエンス(全般)
- 電子工学および電気工学