8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1

Gyorgy Hajas, Attila Bacsi, Leopoldo Aguilera-Aguirre, Muralidhar L. Hegde, K. Hazra Tapas, Sanjiv Sur, Zsolt Radak, Xueqing Ba, Istvan Boldogh

研究成果: Article

55 引用 (Scopus)

抜粋

8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant DNA base lesions induced by reactive oxygen species (ROS). Accumulation of 8-oxoG in the mammalian genome is considered a marker of oxidative stress, to be causally linked to inflammation, and is thought to contribute to aging processes and various aging-related diseases. Unexpectedly, mice that lack 8-oxoguanine DNA glycosylase-1 (OGG1) activity and accumulate 8-oxoG in their genome have a normal phenotype and longevity; in fact, they show increased resistance to both inflammation and oxidative stress. OGG1 excises and generates free 8-oxoG base during DNA base-excision repair (BER) processes. In the present study, we report that in the presence of the 8-oxoG base, OGG1 physically interacts with guanine nucleotide-free and GDP-bound Rac1 protein. This interaction results in rapid GDP→GTP, but not GTP→GDP, exchange in vitro. Importantly, a rise in the intracellular 8-oxoG base levels increases the proportion of GTP-bound Rac1. In turn Rac1-GTP mediates an increase in ROS levels via nuclear membrane-associated NADPH oxidase type 4. These results show a novel mechanism by which OGG1 in complex with 8-oxoG is linked to redox signaling and cellular responses.

元の言語English
ページ(範囲)384-394
ページ数11
ジャーナルFree Radical Biology and Medicine
61
DOI
出版物ステータスPublished - 2013 5 28
外部発表Yes

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)

フィンガープリント 8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用