A Characterization of Harmonic Lr -Vector Fields in Two-Dimensional Exterior Domains

Matthias Hieber, Hideo Kozono, Anton Seyfert, Senjo Shimizu, Taku Yanagisawa

研究成果: Article査読

1 被引用数 (Scopus)


Consider the space of harmonic vector fields h in Lr(Ω) for 1 < r< ∞ in the two-dimensional exterior domain Ω with the smooth boundary ∂Ω subject to the boundary conditions h· ν= 0 or h∧ ν= 0 , where ν denotes the unit outward normal to ∂Ω. Denoting these spaces by Xharr(Ω) and Vharr(Ω), respectively, it is shown that, in spite of the lack of compactness of Ω , both of these spaces are finite dimensional and that their dimension of both spaces coincides with L for 2 < r< ∞ and L- 1 for 1 < r≤ 2. Here L is the number of disjoint simple closed curves consisting of the boundary ∂Ω.

ジャーナルJournal of Geometric Analysis
出版ステータスPublished - 2020 12 1

ASJC Scopus subject areas

  • Geometry and Topology

フィンガープリント 「A Characterization of Harmonic L<sup>r</sup> -Vector Fields in Two-Dimensional Exterior Domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。