A Concept for a robot arm with adjustable series clutch actuators and passive gravity compensation for enhanced safety

Alexander Schmitz, Soumya Bhavaraju, Sophon Somlor, Gonzalo Aguirre Dominguez, Mitsuhiro Kamezaki, Wei Wang, Shigeki Sugano

研究成果: Conference contribution

6 引用 (Scopus)

抜粋

Passive compliance is useful for robotic arms to ensure their safety. Often springs are used, but they are problematic because they reduce the achievable accelerations and can lead to underdamped oscillations. Torque limiters enhance the safety, but usually the torque limit cannot be adjusted to a desired torque. Electronically adjustable torque limiters, also known as series clutch actuators, have several benefits, especially for robotic arms, but they also have severe limitations. This paper suggests incorporating series clutch actuators into a gravity compensated arm. Consequently, gravity should not limit the isotropically achievable force anymore and in the case of power outage the arm keeps its position. The benefits and limitations of a series clutch actuator in a gravity compensated arm are discussed, and a prototype of such an arm is presented. Commercially available magnetic friction clutches are used. Preliminary experiments demonstrate that the safety can be increased.

元の言語English
ホスト出版物のタイトルIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
出版者Institute of Electrical and Electronics Engineers Inc.
ページ1322-1327
ページ数6
2015-August
ISBN(印刷物)9781467391078
DOI
出版物ステータスPublished - 2015 8 25
イベントIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2015 - Busan, Korea, Republic of
継続期間: 2015 7 72015 7 11

Other

OtherIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2015
Korea, Republic of
Busan
期間15/7/715/7/11

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Software

フィンガープリント A Concept for a robot arm with adjustable series clutch actuators and passive gravity compensation for enhanced safety' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Schmitz, A., Bhavaraju, S., Somlor, S., Dominguez, G. A., Kamezaki, M., Wang, W., & Sugano, S. (2015). A Concept for a robot arm with adjustable series clutch actuators and passive gravity compensation for enhanced safety. : IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM (巻 2015-August, pp. 1322-1327). [7222722] Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/AIM.2015.7222722