A construction of noncontractible simply connected cell-like two-dimensional Peano continua

Katsuya Eda, Umed H. Karimov, Dušan Repovš

    研究成果: Article

    5 引用 (Scopus)

    抜粋

    Using the topologist sine curve we present a new functorial construction of cone-like spaces, starting in the category of all path-connected topological spaces with a base point and continuous maps, and ending in the subcategory of all simply connected spaces. If one starts from a noncontractible n-dimensional Peano continuum for any n > 0, then our construction yields a simply connected noncontractible (n + l)-dimensional celllike Peano continuum. In particular, starting from the circle double-struck S sign 1, one gets a noncontractible simply connected cell-like 2-dimensional Peano continuum.

    元の言語English
    ページ(範囲)193-203
    ページ数11
    ジャーナルFundamenta Mathematicae
    195
    発行部数3
    DOI
    出版物ステータスPublished - 2007

    ASJC Scopus subject areas

    • Algebra and Number Theory

    フィンガープリント A construction of noncontractible simply connected cell-like two-dimensional Peano continua' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用