A Dynamic Bayesian Network Model for production and inventory control

Ji Sun Shin*, Noriyuki Takazaki, Tae Hong Lee, Jin Il Kim, Hee Hyol Lee

*この研究の対応する著者

研究成果: Article査読

抄録

In general, production quantities and delivered goods change randomly and consequently total stocks also change randomly. This paper deals with production and inventory control using a Dynamic Bayesian Network. The Bayesian Network is a probabilistic model which represents the qualitative dependence between two or more random variables by a graph structure, and the quantitative relations between individual variables by conditional probabilities. The probabilistic distribution of the total stock is calculated by propagation of probabilities on the network. Furthermore, a rule for adjustment of production quantities maintains the desired probabilities of exceeding the lower and upper limits on total stocks.

本文言語English
ページ(範囲)37-45
ページ数9
ジャーナルElectrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)
175
2
DOI
出版ステータスPublished - 2011 4月 30

ASJC Scopus subject areas

  • エネルギー工学および電力技術
  • 電子工学および電気工学

フィンガープリント

「A Dynamic Bayesian Network Model for production and inventory control」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル