A dynamic scheduling algorithm with minimum context switches for spacecraft avionics systems

Behrouz Zolfaghari*


研究成果: Conference contribution

4 被引用数 (Scopus)


Most of the process-scheduling algorithms, which can be exploited by spacecraft avionics systems, fall into one of the two main categories: static algorithms and dynamic algorithms.12 Static algorithms assign priorities to processes before runtime. These algorithms bound the CPU utilization and require considerable information about the runtime parameters of processes in advance. These disadvantages encourage the spacecraft avionics system designers to exploit dynamic algorithms instead. But these algorithms have their own disadvantages. For example, these algorithms require so many context switches to schedule the processes. This causes a notable overhead in the runtime. One of the well-known dynamic algorithms is the MLF (Minimum Laxity First) algorithm. The MLF algorithm suffers from a serious problem (in addition to the need for so many context switches). This paper proposes a novel dynamic algorithm called Optimized MLF which is an attempt to solve the problems of the MLF algorithm in order to make it more applicable to spacecraft avionics systems. The performance of the proposed scheduling algorithm is evaluated through the use of mathematical modeling as well as simulation results. Both the mathematical model and simulation results show that the optimized MLF algorithm requires less context switches than the traditional MLF and makes the MLF algorithm more applicable to spacecraft avionics systems.

ホスト出版物のタイトル2004 IEEE Aerospace Conference Proceedings
出版ステータスPublished - 2004
イベント2004 IEEE Aerospace Conference Proceedings - Big Sky, MT, United States
継続期間: 2004 3月 62004 3月 13


名前IEEE Aerospace Conference Proceedings


Conference2004 IEEE Aerospace Conference Proceedings
国/地域United States
CityBig Sky, MT

ASJC Scopus subject areas

  • 航空宇宙工学
  • 宇宙惑星科学


「A dynamic scheduling algorithm with minimum context switches for spacecraft avionics systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。