A framework for compiling high quality knowledge resources from raw corpora

Gongye Jin, Daisuke Kawahara, Sadao Kurohashi

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

The identification of various types of relations is a necessary step to allow computers to understand natural language text. In particular, the clarification of relations between predicates and their arguments is essential because predicate - argument structures convey most of the information in natural languages. To precisely capture these relations, wide-coverage knowledge resources are indispensable. Such knowledge resources can be derived from automatic parses of raw corpora, but unfortunately parsing still has not achieved a high enough performance for precise knowledge acquisition. We present a framework for compiling high quality knowledge resources from raw corpora. Our proposed framework selects high quality dependency relations from automatic parses and makes use of them for not only the calculation of fundamental distributional similarity but also the acquisition of knowledge such as case frames.

本文言語English
ホスト出版物のタイトルProceedings of the 9th International Conference on Language Resources and Evaluation, LREC 2014
編集者Nicoletta Calzolari, Khalid Choukri, Sara Goggi, Thierry Declerck, Joseph Mariani, Bente Maegaard, Asuncion Moreno, Jan Odijk, Helene Mazo, Stelios Piperidis, Hrafn Loftsson
出版社European Language Resources Association (ELRA)
ページ109-114
ページ数6
ISBN(電子版)9782951740884
出版ステータスPublished - 2014
外部発表はい
イベント9th International Conference on Language Resources and Evaluation, LREC 2014 - Reykjavik, Iceland
継続期間: 2014 5 262014 5 31

出版物シリーズ

名前Proceedings of the 9th International Conference on Language Resources and Evaluation, LREC 2014

Other

Other9th International Conference on Language Resources and Evaluation, LREC 2014
国/地域Iceland
CityReykjavik
Period14/5/2614/5/31

ASJC Scopus subject areas

  • 言語学および言語
  • 図書館情報学
  • 教育
  • 言語および言語学

フィンガープリント

「A framework for compiling high quality knowledge resources from raw corpora」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル