A functions localized neural network with branch gates

Qingyu Xiong, Kotaro Hirasawa*, Jinglu Hu, Junichi Murata

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

In this paper, a functions localized network with branch gates (FLN-bg) is studied, which consists of a basic network and a branch gate network. The branch gate network is used to determine which intermediate nodes of the basic network should be connected to the output node with a gate coefficient ranging from 0 to 1. This determination will adjust the outputs of the intermediate nodes of the basic network depending on the values of the inputs of the network in order to realize a functions localized network. FLN-bg is applied to function approximation problems and a two-spiral problem. The simulation results show that FLN-bg exhibits better performance than conventional neural networks with comparable complexity.

本文言語English
ページ(範囲)1461-1481
ページ数21
ジャーナルNeural Networks
16
10
DOI
出版ステータスPublished - 2003 12月

ASJC Scopus subject areas

  • 認知神経科学
  • 人工知能

フィンガープリント

「A functions localized neural network with branch gates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル