A generalization of the Erdös-Surányi problem

Eiji Miyanohara

    研究成果: Article査読

    抄録

    Erdös-Surányi and Prielipp suggested to study the following problem: For any integers . k>0 and . n, are there an integer . N and a map . ε(lunate):(1,...,N)→(-1,1) such that . (0.1)n=∑j=1Nε(lunate)(j)jk? Mitek and Bleicher independently solved this problem affirmatively.In this paper we consider the case that for some positive odd integer . L the numbers . ε(lunate)(j) are . L-th roots of unity. We show that the answer to the corresponding question is negative if and only if . L is a prime power.

    本文言語English
    ジャーナルIndagationes Mathematicae
    DOI
    出版ステータスAccepted/In press - 2016 7 1

    ASJC Scopus subject areas

    • Mathematics(all)

    フィンガープリント 「A generalization of the Erdös-Surányi problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル