A generalized lower bound theorem for balanced manifolds

Martina Juhnke-Kubitzke, Satoshi Murai*, Isabella Novik, Connor Sawaske

*この研究の対応する著者

研究成果査読

5 被引用数 (Scopus)

抄録

A simplicial complex of dimension d- 1 is said to be balanced if its graph is d-colorable. Juhnke-Kubitzke and Murai proved an analogue of the generalized lower bound theorem for balanced simplicial polytopes. We establish a generalization of their result to balanced triangulations of closed homology manifolds and balanced triangulations of orientable homology manifolds with boundary under an additional assumption that all proper links of these triangulations have the weak Lefschetz property. As a corollary, we show that if Δ is an arbitrary balanced triangulation of any closed homology manifold of dimension d- 1 ≥ 3 , then 2h2(Δ)-(d-1)h1(Δ)≥4(d2)(β~1(Δ)-β~0(Δ)), thus verifying a conjecture by Klee and Novik. To prove these results we develop the theory of flag h′ ′-vectors.

本文言語English
ページ(範囲)921-942
ページ数22
ジャーナルMathematische Zeitschrift
289
3-4
DOI
出版ステータスPublished - 2018 8 1
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「A generalized lower bound theorem for balanced manifolds」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル