A globally convergent nonlinear homotopy method for MOS transistor circuits

Dan Niu*, Kazutoshi Sako, Guangming Hu, Yasuaki Inoue

*この研究の対応する著者

    研究成果: Article査読

    6 被引用数 (Scopus)

    抄録

    Finding DC operating points of nonlinear circuits is an important and difficult task. The Newton-Raphson method adopted in the SPICE-like simulators often fails to converge to a solution. To overcome this convergence problem, homotopy methods have been studied from various viewpoints. However, most previous studies are mainly focused on the bipolar transistor circuits and no paper presents the global convergence theorems of homotopy methods for MOS transistor circuits. Moreover, due to the improvements and advantages of MOS transistor technologies, extending the homotopy methods to MOS transistor circuits becomes more and more necessary and important. This paper proposes two nonlinear homotopy methods for MOS transistor circuits and proves the global convergence theorems for the proposed MOS nonlinear homotopy method II. Numerical examples show that both of the two proposed homotopy methods for MOS transistor circuits are more effective for finding DC operating points than the conventional MOS homotopy method and they are also capable of finding DC operating points for large-scale circuits.

    本文言語English
    ページ(範囲)2251-2260
    ページ数10
    ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
    E95-A
    12
    DOI
    出版ステータスPublished - 2012 12月

    ASJC Scopus subject areas

    • 電子工学および電気工学
    • コンピュータ グラフィックスおよびコンピュータ支援設計
    • 応用数学
    • 信号処理

    フィンガープリント

    「A globally convergent nonlinear homotopy method for MOS transistor circuits」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル