A GPU parallel computing method for LPUSS

Chyon Hae Kim*, Shigeki Sugano


研究成果: Article査読

9 被引用数 (Scopus)


We discuss the effective implementation of parallel processing for linear prediction-based uniform state sampling (LPUSS). In previous work, we proposed LPUSS as an optimization algorithm for mechanical motions that assures high optimality of the solutions and computational efficiency. In parallel computation, LPUSS requires balanced memory allocation and managed processing timing. In this paper, we propose an effective parallel computing method that assures high optimality and calculation efficiency in parallel processing using GPU processor. We conducted two experiments to validate the proposed method. In the first experiment, we compared single-thread processing for LPUSS and the proposed parallel processing. As a result of this experiment, calculation speed of LPUSS was about 4-20 times faster than that with single-thread CPU. In the second experiment, we applied the proposed method to the optimization of sixtuple inverted pendulum. As a result, the proposed method optimized the motion within 40 minutes. According to our survey, there is no other optimization method that is applicable to higher than quadruple inverted pendulum models with standard constraints.

ジャーナルAdvanced Robotics
出版ステータスPublished - 2013 7月

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人間とコンピュータの相互作用
  • ハードウェアとアーキテクチャ
  • コンピュータ サイエンスの応用


「A GPU parallel computing method for LPUSS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。