A hardware-Trojan classification method utilizing boundary net structures

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

Recently, cybersecurity has become a serious concern for us. For example, the threats of hardware Trojans (malfunctions inserted into hardware devices) have appeared. Since hardware vendors often outsource parts of their hardware products to third-party vendors, the risk of hardware-Trojan insertion has been increased. Especially in the hardware design step, malicious vendors have a chance to insert hardware Trojans easily. In this paper, we propose a hardware-Trojan classification method utilizing boundary net structures. To begin with, we use a machine-learning-based hardware-Trojan detection method and classify the nets in a given netlist into a set of normal nets and that of Trojan nets. Based on the classification, we investigate the nets around the boundary between normal nets and Trojan nets and extract the features of the nets identified to be normal nets or Trojan nets mistakenly. Finally, using the classification results of machine-learning-based hardware-Trojan detection and the extracted features of the boundary nets, we classify the nets in a given netlist into a set of normal nets and that of Trojan nets again. The experimental results demonstrate that our method outperforms an existing machine-learning-based hardware-Trojan detection method in terms of true positive rate.

本文言語English
ホスト出版物のタイトル2018 IEEE International Conference on Consumer Electronics, ICCE 2018
編集者Saraju P. Mohanty, Peter Corcoran, Hai Li, Anirban Sengupta, Jong-Hyouk Lee
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1-4
ページ数4
ISBN(電子版)9781538630259
DOI
出版ステータスPublished - 2018 3 26
イベント2018 IEEE International Conference on Consumer Electronics, ICCE 2018 - Las Vegas, United States
継続期間: 2018 1 122018 1 14

出版物シリーズ

名前2018 IEEE International Conference on Consumer Electronics, ICCE 2018
2018-January

Other

Other2018 IEEE International Conference on Consumer Electronics, ICCE 2018
国/地域United States
CityLas Vegas
Period18/1/1218/1/14

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学
  • メディア記述

フィンガープリント

「A hardware-Trojan classification method utilizing boundary net structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル